Successfully reported this slideshow.
Upcoming SlideShare
×

# Spm 2014 add math modul sbp super score [lemah] k1 set 1 dan skema

3,412 views

Published on

Bahan Pecutan Akhir Add Math SPM

Published in: Education
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

### Spm 2014 add math modul sbp super score [lemah] k1 set 1 dan skema

1. 1. MODUL SUPER SCORE SBP 2014 KERTAS 1 SET 1 NAMA : MARKAH TARIKH : Answer all questions. Jawab semua soalan. 1. The diagram shows the relation between set X and set Y. Rajah menunjukkan hubungan di antara set X dan set Y. State /Nyatakan (a) The range of the relation Julat hubungan itu (b) The value of x Nilai x [2 marks] [2 markah] Answer / Jawapan : – 2 2 3 2. Given the function g : x → 5  x . Find the values of x if g(x) = 4. [2 marks] Diberi fungsi g : x → 5  x . Cari nilai-nilai x jika g(x) = 4. [2 markah] Answer / Jawapan : ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 1 For examiner’s use only 2 2 2 1 x g(x) – 4 x 1 4 6 Set X Set Y
2. 2. MODUL SUPER SCORE SBP 2014 3. Given the functions f(x) = 4x – m and 9 ( ) 1    f x kx , where k and m are constants. Find the 16 values of k and m. [3 marks] Diberi fungsi f(x) = 4x – m dan 9 ( ) 1    f x kx , dimana k dan m adalah pemalar. Cari nilai-nilai 16 bagi k dan m. [3 markah] Answer / Jawapan : 4. Diagram shows a graph of a quadratic function f(x) = ‒2(x + h)2 ‒ 2 where k is a constant. Rajah menunjukkan graf fungsi kuadratik f(x) = ‒2(x + h)2 ‒ 2 dimana k ialah pemalar. Find Cari (a) the value of k nilai k (b) the value of h nilai h (c) the equation of axis of symmetry. persamaan bagi paksi simetri. [3 marks] [3 markah] Answer / Jawapan : ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 2 For examiner’s use only 3 3 3 4 x 0 (-3, k)  f(x) = −2(x + h)2 − 2 y
3. 3. MODUL SUPER SCORE SBP 2014 5. Find the values of p if the quadratic function f(x) = 2x2 + 2px – (p + 1) has a minimum value of – 5 [3 marks] Cari nilai-nilai bagi p jika fungsi kuadratik f(x) = 2x2 + 2px – (p + 1) mempunyai nilai minimum – 5 [3 markah] Answer / Jawapan : 6. Find the range of values of x for (x 4) 24 6x 2    [2 marks] Cari julat nilai x bagi (x 4) 24 6x 2    [2 markah] Answer / Jawapan : ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 3 For examiner’s use only 2 6 3 5
4. 4. MODUL SUPER SCORE SBP 2014 7. One of the roots of the quadratic equation 2 3 0 2 x  x  k  is – 4. Find the value of k. [2 marks] Satu dari punca persamaan kuadratik 2 3 0 2 x  x  k  ialah – 4. Cari nilai k. [2 markah] Answer / Jawapan : 8. One of the roots of the equation 3x2 – 6x + p = 0 is three times the other root , find the possible values of p. [3 marks] Salah satu punca bagi persamaan 3x2 – 6x + p = 0 adalah tiga kali punca yang satu lagi, cari nilai yang mungkin bagi p. [3 markah] Answer / Jawapan : ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 4 examiner’s use only 3 For 8 2 7
5. 5. MODUL SUPER SCORE SBP 2014 9. Solve the equation 216 6 0 2 4   x x . [3 marks] Selesaikan persamaan 216 6 0 2 4   x x [3 markah] Answer / Jawapan : 10. Solve the equation 2x • 5x +2 = 25000. [3 marks] Selesaikan persamaan 2x • 5x +2 = 25000. [3 markah] Answer / Jawapan : ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 5 For examiner’s use only 3 9 3 10
6. 6. MODUL SUPER SCORE SBP 2014 11. Solve the equation log 2 (x – 3) = log 2 4x + 1 [3 marks] Selesaikan persamaan log 2 (x – 3) = log 2 4x + 1 [3 markah] Answer / Jawapan : 12. Given that log 2 x = m and log 2 y = n. Express log 4 (xy2) in terms of m and n. [3 marks] Diberi log 2 x = m dan log 2 y = n. Nyatakan log 4 (xy2) dalam sebutan m dan n. [3 markah] Answer / Jawapan : lum ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 6 examiner’s use only 3 For 11 4 12
7. 7. MODUL SUPER SCORE SBP 2014 13. Find the sum to infinity of the geometric progression 20, 10, 5, ... [2 marks] Cari hasil tambah ketakterhinggaan janjang geometri 20, 10, 5, ... [2 markah] Answer / Jawapan : 14. Given a geometric progression has the first term and the sum to infinity are 25 and 62.5 respectively. Find the common ratio of the progression. [2 marks] Diberi satu janjang geometri mempunyai sebutan pertama dan hasil tambah hingga ketakterhinggaan adalah 25 dan 62.5 masing-masing. Cari nisbah sepunya bagi janjang tersebut. [2 markah] Answer / Jawapan : ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 7 For examiner’s use only 2 14 2 13
8. 8. MODUL SUPER SCORE SBP 2014 15. Write 0.01010101... as a single fraction in the lowest terms. [3 marks] Tulis 0.0101010... sebagai satu pecahan tunggal dalam sebutan terendah. [3 markah] Answer / Jawapan : 16. The diagram below shows two vectors OP and OQ . Rajah di bawah menunjukkan dua buah vektor OP dan OQ . Express Ungkapkan  x  y   (a) OP in the form     .  x  y   OP dalam bentuk     . ~ ~  (b) PQ in the form j y i x ~ ~  PQ dalam bentuk j y i x [4 marks] [4 markah] Answer / Jawapan : x ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 8 examiner’s use only 3 For 15 4 16 P(– 2 , 5) Q(4 , – 3 ) y
9. 9. MODUL SUPER SCORE SBP 2014  4   17. Given       2 h ,        3   6 k and       0     ah k   m , find the values of a and m. [3 marks]  4   Diberi       2 h ,        3   6 k dan       0     ah k   m , cari nilai bagi a dan m. [3 markah] Answer / Jawapan : uuur 18. Points A, B and C are collinear. It is given that 64 AB a b uuur and BC  4a  (2  k)b %% , where k is % % a constant. Find uuur Titik A, B dan C adalah segaris. Diberi bahawa AB  6a  4b uuur dan BC  4a  (2  k)b % % , dengan % % keadaan k adalah pemalar. Cari (a) the value of k nilai k (b) the ratio AB : BC nisbah AB : BC [4 marks] [4 markah] Answer / Jawapan : ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 9 For examiner’s use only 3 17 4 18
10. 10. MODUL SUPER SCORE SBP 2014 Jawapan/Answer : No Answer 1 (a) {– 2, 2, 3, 6} (b) x = 0 2 x = 1, x = 9 3 k = 1 4 , m = 9 4 4 (a) k = – 2 (b) h = 3 (c) x = – 3 5 – 4, 2 6 4 2    x 7 k = 44 8 1   , 2 9  p 4 9 x = 5 10 x = 3 11 x = 3  7 12 2 m n  2 13 40 14 0.6 15 1 99 16    5   2 (a)     (b) 86j i ~ ~ 17 a = 2 , m = – 6 18 (a) k = 14  3 (b) AB : BC = 3 : 2 ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 10