Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Spm 2014 add math modul sbp super score [lemah] k1 set 1 dan skema

3,256 views

Published on

Bahan Pecutan Akhir Add Math SPM

Published in: Education
  • Be the first to comment

Spm 2014 add math modul sbp super score [lemah] k1 set 1 dan skema

  1. 1. MODUL SUPER SCORE SBP 2014 KERTAS 1 SET 1 NAMA : MARKAH TARIKH : Answer all questions. Jawab semua soalan. 1. The diagram shows the relation between set X and set Y. Rajah menunjukkan hubungan di antara set X dan set Y. State /Nyatakan (a) The range of the relation Julat hubungan itu (b) The value of x Nilai x [2 marks] [2 markah] Answer / Jawapan : – 2 2 3 2. Given the function g : x → 5  x . Find the values of x if g(x) = 4. [2 marks] Diberi fungsi g : x → 5  x . Cari nilai-nilai x jika g(x) = 4. [2 markah] Answer / Jawapan : ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 1 For examiner’s use only 2 2 2 1 x g(x) – 4 x 1 4 6 Set X Set Y
  2. 2. MODUL SUPER SCORE SBP 2014 3. Given the functions f(x) = 4x – m and 9 ( ) 1    f x kx , where k and m are constants. Find the 16 values of k and m. [3 marks] Diberi fungsi f(x) = 4x – m dan 9 ( ) 1    f x kx , dimana k dan m adalah pemalar. Cari nilai-nilai 16 bagi k dan m. [3 markah] Answer / Jawapan : 4. Diagram shows a graph of a quadratic function f(x) = ‒2(x + h)2 ‒ 2 where k is a constant. Rajah menunjukkan graf fungsi kuadratik f(x) = ‒2(x + h)2 ‒ 2 dimana k ialah pemalar. Find Cari (a) the value of k nilai k (b) the value of h nilai h (c) the equation of axis of symmetry. persamaan bagi paksi simetri. [3 marks] [3 markah] Answer / Jawapan : ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 2 For examiner’s use only 3 3 3 4 x 0 (-3, k)  f(x) = −2(x + h)2 − 2 y
  3. 3. MODUL SUPER SCORE SBP 2014 5. Find the values of p if the quadratic function f(x) = 2x2 + 2px – (p + 1) has a minimum value of – 5 [3 marks] Cari nilai-nilai bagi p jika fungsi kuadratik f(x) = 2x2 + 2px – (p + 1) mempunyai nilai minimum – 5 [3 markah] Answer / Jawapan : 6. Find the range of values of x for (x 4) 24 6x 2    [2 marks] Cari julat nilai x bagi (x 4) 24 6x 2    [2 markah] Answer / Jawapan : ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 3 For examiner’s use only 2 6 3 5
  4. 4. MODUL SUPER SCORE SBP 2014 7. One of the roots of the quadratic equation 2 3 0 2 x  x  k  is – 4. Find the value of k. [2 marks] Satu dari punca persamaan kuadratik 2 3 0 2 x  x  k  ialah – 4. Cari nilai k. [2 markah] Answer / Jawapan : 8. One of the roots of the equation 3x2 – 6x + p = 0 is three times the other root , find the possible values of p. [3 marks] Salah satu punca bagi persamaan 3x2 – 6x + p = 0 adalah tiga kali punca yang satu lagi, cari nilai yang mungkin bagi p. [3 markah] Answer / Jawapan : ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 4 examiner’s use only 3 For 8 2 7
  5. 5. MODUL SUPER SCORE SBP 2014 9. Solve the equation 216 6 0 2 4   x x . [3 marks] Selesaikan persamaan 216 6 0 2 4   x x [3 markah] Answer / Jawapan : 10. Solve the equation 2x • 5x +2 = 25000. [3 marks] Selesaikan persamaan 2x • 5x +2 = 25000. [3 markah] Answer / Jawapan : ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 5 For examiner’s use only 3 9 3 10
  6. 6. MODUL SUPER SCORE SBP 2014 11. Solve the equation log 2 (x – 3) = log 2 4x + 1 [3 marks] Selesaikan persamaan log 2 (x – 3) = log 2 4x + 1 [3 markah] Answer / Jawapan : 12. Given that log 2 x = m and log 2 y = n. Express log 4 (xy2) in terms of m and n. [3 marks] Diberi log 2 x = m dan log 2 y = n. Nyatakan log 4 (xy2) dalam sebutan m dan n. [3 markah] Answer / Jawapan : lum ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 6 examiner’s use only 3 For 11 4 12
  7. 7. MODUL SUPER SCORE SBP 2014 13. Find the sum to infinity of the geometric progression 20, 10, 5, ... [2 marks] Cari hasil tambah ketakterhinggaan janjang geometri 20, 10, 5, ... [2 markah] Answer / Jawapan : 14. Given a geometric progression has the first term and the sum to infinity are 25 and 62.5 respectively. Find the common ratio of the progression. [2 marks] Diberi satu janjang geometri mempunyai sebutan pertama dan hasil tambah hingga ketakterhinggaan adalah 25 dan 62.5 masing-masing. Cari nisbah sepunya bagi janjang tersebut. [2 markah] Answer / Jawapan : ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 7 For examiner’s use only 2 14 2 13
  8. 8. MODUL SUPER SCORE SBP 2014 15. Write 0.01010101... as a single fraction in the lowest terms. [3 marks] Tulis 0.0101010... sebagai satu pecahan tunggal dalam sebutan terendah. [3 markah] Answer / Jawapan : 16. The diagram below shows two vectors OP and OQ . Rajah di bawah menunjukkan dua buah vektor OP dan OQ . Express Ungkapkan  x  y   (a) OP in the form     .  x  y   OP dalam bentuk     . ~ ~  (b) PQ in the form j y i x ~ ~  PQ dalam bentuk j y i x [4 marks] [4 markah] Answer / Jawapan : x ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 8 examiner’s use only 3 For 15 4 16 P(– 2 , 5) Q(4 , – 3 ) y
  9. 9. MODUL SUPER SCORE SBP 2014  4   17. Given       2 h ,        3   6 k and       0     ah k   m , find the values of a and m. [3 marks]  4   Diberi       2 h ,        3   6 k dan       0     ah k   m , cari nilai bagi a dan m. [3 markah] Answer / Jawapan : uuur 18. Points A, B and C are collinear. It is given that 64 AB a b uuur and BC  4a  (2  k)b %% , where k is % % a constant. Find uuur Titik A, B dan C adalah segaris. Diberi bahawa AB  6a  4b uuur dan BC  4a  (2  k)b % % , dengan % % keadaan k adalah pemalar. Cari (a) the value of k nilai k (b) the ratio AB : BC nisbah AB : BC [4 marks] [4 markah] Answer / Jawapan : ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 9 For examiner’s use only 3 17 4 18
  10. 10. MODUL SUPER SCORE SBP 2014 Jawapan/Answer : No Answer 1 (a) {– 2, 2, 3, 6} (b) x = 0 2 x = 1, x = 9 3 k = 1 4 , m = 9 4 4 (a) k = – 2 (b) h = 3 (c) x = – 3 5 – 4, 2 6 4 2    x 7 k = 44 8 1   , 2 9  p 4 9 x = 5 10 x = 3 11 x = 3  7 12 2 m n  2 13 40 14 0.6 15 1 99 16    5   2 (a)     (b) 86j i ~ ~ 17 a = 2 , m = – 6 18 (a) k = 14  3 (b) AB : BC = 3 : 2 ©Panel Perunding Mata Pelajaran Matematik Tambahan, Page 10

×