SlideShare a Scribd company logo

ΧΡΗΣΗ ΤΕΧΝΙΚΩΝ ΒΑΘΙΑΣ ΜΑΘΗΣΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΣΗΜΑΝΤΙΚΟΤΗΤΑΣ ΔΗΜΟΓΡΑΦΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΣΤΗΝ ΑΙΣΘΗΤΙΚΗ ΙΣΤΟΣΕΛΙΔΩΝ

ISSEL
ISSEL

Οι ιστοσελίδες συνιστούν το πιο διαδεδομένο και πλέον απαραίτητο μέσο για όλους τους τομείς, από την ενημέρωση μέχρι και τη διασκέδαση. Η αισθητική τους αποτελεί αναπόσπαστο κομμάτι του σχεδιασμού μιας ιστοσελίδας, καθώς o ρόλος της είναι πολυδιάστατος. Αρχικά, βοηθά στην υποστήριξη του περιεχομένου και της λειτουργικότητας μιας ιστοσελίδας ενώ ταυτόχρονα αποσκοπεί στο να κεντρίσει το ενδιαφέρον συγκεκριμένων δημογραφικών ομάδων. Επίκεντρο της παρούσας εργασίας είναι να διερευνήσει τη σημαντικότητα των δημογραφικών χαρακτηριστικών στην αξιολόγηση της αισθητικής μιας ιστοσελίδας, μέσω της χρήσης αλγορίθμων βαθιάς μάθησης. Για την επίλυση του προβλήματος εφαρμόστηκαν δύο διαφορετικές προσεγγίσεις. Η πρώτη αφορά την εκπαίδευση τριών διαφορετικών αρχιτεκτονικών συνελικτικών νευρωνικών δικτύων στο σύνολο των δεδομένων, την αρχιτεκτονική AlexNet, VGG16 και Xception. Η AlexNet έχει αξιολογηθεί ξανά στο συγκεκριμένο σετ και παρουσιάζει αξιόπιστα αποτελέσματα ενώ η VGG16 παρουσιάζεται ως μια βελτιωμένη λύση. Η Xception είναι μια σύγχρονη αρχιτεκτονική που δοκιμάζεται για πρώτη φορά στο σύνολο αυτό και ξεπέρασε τα βιβλιογραφικά αποτελέσματα. Η δεύτερη προσέγγιση περιλαμβάνει τον διαχωρισμό του σετ δεδομένων σε δημογραφικές ομάδες και την εκπαίδευση συνελικτικών δικτύων για κάθε ομάδα ξεχωριστά. Με αυτό τον τρόπο τα εκάστοτε μοντέλα μπορούν να αντιληφθούν τα χαρακτηριστικά της κάθε δημογραφικής ομάδας. Τέλος, τα μοντέλα αυτά ενώνονται με διαφορετικές συνδυαστικές μεθόδους και επιλέγεται η βέλτιστη για την αξιολόγηση και τη σύγκριση των αποτελεσμάτων. Στα πειράματα που πραγματοποιήθηκαν γίνονται συγκρίσεις μεταξύ των μοντέλων για κάθε προσέγγιση καθώς και παρουσίαση παραδειγμάτων. Σκοπός της εργασίας είναι να αναδείξει τον ρόλο και τη σημασία των δημογραφικών χαρακτηριστικών, ενώ παράλληλα επισημαίνεται και η συνεισφορά των εξελιγμένων αλγορίθμων βαθιάς μάθησης στην επίτευξη αξιόπιστων προβλεπτικών αποτελεσμάτων αναφορικά με υποκειμενικά ζητήματα, όπως είναι η πρόβλεψη αισθητικής ιστοσελίδων.

1 of 25
Download to read offline
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ
ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ISSEL
ΧΡΗΣΗ ΤΕΧΝΙΚΩΝ ΒΑΘΙΑΣ ΜΑΘΗΣΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΗΣ
ΣΗΜΑΝΤΙΚΟΤΗΤΑΣ ΔΗΜΟΓΡΑΦΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΣΤΗΝ
ΑΙΣΘΗΤΙΚΗ ΙΣΤΟΣΕΛΙΔΩΝ
Εκπόνηση:
Αναστάσιος Παπαδόπουλος
ΑΕΜ 8407
Επιβλέποντες:
Αναπ. Καθηγητής Ανδρέας Συμεωνίδης
Ιούλιος 2021
Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών
Κίνητρο
• Επιρροή της αισθητικής ιστοσελίδων
• Κατανόηση των δημογραφικών χαρακτηριστικών
• Προσωποποιημένος σχεδιασμός ιστοσελίδας
Σκοπός της διπλωματικής εργασίας
Στόχος: Η διερεύνηση της σημαντικότητας των δημογραφικών
μεταβλητών στην επίδραση της αισθητικής αντίληψης του
ατόμου μέσω των αλγορίθμων βαθιάς μάθησης.
Σύνολο Δεδομένων
• 398 ιστοσελίδες
• 18,448 συμμετέχοντες από 43 χώρες
• 441,478 αξιολογήσεις σε κλίμακα 1-9
Μεθοδολογία
• Μελέτη της σημαντικότητας των δημογραφικών χαρακτηριστικών μέσω
διάφορων αλγορίθμων
• Εφαρμογή αλγορίθμων βαθιάς μάθησης:
1η προσέγγιση: Εφαρμογή τριών διαφορετικών αρχιτεκτονικών
συνελικτικών νευρωνικών δικτύων στο σύνολο δεδομένων.
2η προσέγγιση: Εφαρμογή μοντέλων βαθιάς μάθησης και
Συνδυαστικά μοντέλα σε δημογραφικές ομάδες
Διαδικασία Διπλωματικής
Εξαγωγή σημαντικότητας δημογραφικών μεταβλητών
Διαχωρισμός του σετ δεδομένων σε 4 δημογραφικές
ομάδες
Χρήση ενός CNN για εκπαίδευση κάθε ομάδας Μεταφορά μάθησης
Χρήση Συνδυαστικών μεθόδων για την ένωση των 4
δημογραφικών μοντέλων Πρόβλεψη σκορ αισθητικής
Αξιολόγηση των μοντέλων

Recommended

Stelios poulakakis daktylidis diploma thesis presentation
Stelios poulakakis daktylidis diploma thesis presentationStelios poulakakis daktylidis diploma thesis presentation
Stelios poulakakis daktylidis diploma thesis presentationISSEL
 
Alexandros Delitzas Diploma Thesis presentation
Alexandros Delitzas Diploma Thesis presentationAlexandros Delitzas Diploma Thesis presentation
Alexandros Delitzas Diploma Thesis presentationISSEL
 
Evangelos papathomas diploma thesis presentation
Evangelos papathomas diploma thesis presentationEvangelos papathomas diploma thesis presentation
Evangelos papathomas diploma thesis presentationISSEL
 
Gougousis Dimitris: Development of an automated machine learning system for p...
Gougousis Dimitris: Development of an automated machine learning system for p...Gougousis Dimitris: Development of an automated machine learning system for p...
Gougousis Dimitris: Development of an automated machine learning system for p...Manos Tsardoulias
 
Ανίχνευση Αποκλίνουσας Συμπεριφοράς Χρηστών Διαδικτυακής Εφαρμογής Σε Πραγματ...
Ανίχνευση Αποκλίνουσας Συμπεριφοράς Χρηστών Διαδικτυακής Εφαρμογής Σε Πραγματ...Ανίχνευση Αποκλίνουσας Συμπεριφοράς Χρηστών Διαδικτυακής Εφαρμογής Σε Πραγματ...
Ανίχνευση Αποκλίνουσας Συμπεριφοράς Χρηστών Διαδικτυακής Εφαρμογής Σε Πραγματ...ISSEL
 
Giannopoulos Nikolaos: Ανάπτυξη Τεχνικών Εξατομίκευσης Διαφημιστικών Προβολών...
Giannopoulos Nikolaos: Ανάπτυξη Τεχνικών Εξατομίκευσης Διαφημιστικών Προβολών...Giannopoulos Nikolaos: Ανάπτυξη Τεχνικών Εξατομίκευσης Διαφημιστικών Προβολών...
Giannopoulos Nikolaos: Ανάπτυξη Τεχνικών Εξατομίκευσης Διαφημιστικών Προβολών...Manos Tsardoulias
 
Ανάλυση αθλητικών επιδόσεων με τη χρήση του συστήματος REMEDES
Ανάλυση αθλητικών επιδόσεων με τη χρήση του συστήματος REMEDESΑνάλυση αθλητικών επιδόσεων με τη χρήση του συστήματος REMEDES
Ανάλυση αθλητικών επιδόσεων με τη χρήση του συστήματος REMEDESISSEL
 
Ανίχνευση Αποκλίνουσας Συμπεριφοράς Χρηστών Διαδικτυακής Εφαρμογής Με Χρήση Τ...
Ανίχνευση Αποκλίνουσας Συμπεριφοράς Χρηστών Διαδικτυακής Εφαρμογής Με Χρήση Τ...Ανίχνευση Αποκλίνουσας Συμπεριφοράς Χρηστών Διαδικτυακής Εφαρμογής Με Χρήση Τ...
Ανίχνευση Αποκλίνουσας Συμπεριφοράς Χρηστών Διαδικτυακής Εφαρμογής Με Χρήση Τ...ISSEL
 

More Related Content

What's hot

Εντοπισμός του Image Inpainting με Μεθόδους Τεχνητής Νοημοσύνης
Εντοπισμός του Image Inpainting με Μεθόδους Τεχνητής ΝοημοσύνηςΕντοπισμός του Image Inpainting με Μεθόδους Τεχνητής Νοημοσύνης
Εντοπισμός του Image Inpainting με Μεθόδους Τεχνητής ΝοημοσύνηςISSEL
 
Συνεχής έµµεση αυθεντικοποίηση χρηστών κινητού τηλεφώνου µέσω ανάλυσης συµπερ...
Συνεχής έµµεση αυθεντικοποίηση χρηστών κινητού τηλεφώνου µέσω ανάλυσης συµπερ...Συνεχής έµµεση αυθεντικοποίηση χρηστών κινητού τηλεφώνου µέσω ανάλυσης συµπερ...
Συνεχής έµµεση αυθεντικοποίηση χρηστών κινητού τηλεφώνου µέσω ανάλυσης συµπερ...ISSEL
 
Έγκαιρη ταυτοποίηση βλαβών με αλγόριθμους Μηχανικής Mάθησης
Έγκαιρη ταυτοποίηση βλαβών με αλγόριθμους Μηχανικής MάθησηςΈγκαιρη ταυτοποίηση βλαβών με αλγόριθμους Μηχανικής Mάθησης
Έγκαιρη ταυτοποίηση βλαβών με αλγόριθμους Μηχανικής MάθησηςISSEL
 
Konstantinos Papadopoulos Diploma Thesis presenation
Konstantinos Papadopoulos Diploma Thesis presenationKonstantinos Papadopoulos Diploma Thesis presenation
Konstantinos Papadopoulos Diploma Thesis presenationISSEL
 
Εφαρμογή Τεχνικών Εξόρυξης Δεδομένων για την Εξαγωγή Προτύπων Διόρθωσης σε Σφ...
Εφαρμογή Τεχνικών Εξόρυξης Δεδομένων για την Εξαγωγή Προτύπων Διόρθωσης σε Σφ...Εφαρμογή Τεχνικών Εξόρυξης Δεδομένων για την Εξαγωγή Προτύπων Διόρθωσης σε Σφ...
Εφαρμογή Τεχνικών Εξόρυξης Δεδομένων για την Εξαγωγή Προτύπων Διόρθωσης σε Σφ...ISSEL
 
Σχεδίαση και ανάπτυξη Μηχανισμού Αυτοματοποίησης παραγωγής Λογισμικού Ελέγχου...
Σχεδίαση και ανάπτυξη Μηχανισμού Αυτοματοποίησης παραγωγής Λογισμικού Ελέγχου...Σχεδίαση και ανάπτυξη Μηχανισμού Αυτοματοποίησης παραγωγής Λογισμικού Ελέγχου...
Σχεδίαση και ανάπτυξη Μηχανισμού Αυτοματοποίησης παραγωγής Λογισμικού Ελέγχου...ISSEL
 
Επανοργάνωση πηγαίου κώδικα από γράφους εξαρτήσεων οντοτήτων µε βάση παραδείγ...
Επανοργάνωση πηγαίου κώδικα από γράφους εξαρτήσεων οντοτήτων µε βάση παραδείγ...Επανοργάνωση πηγαίου κώδικα από γράφους εξαρτήσεων οντοτήτων µε βάση παραδείγ...
Επανοργάνωση πηγαίου κώδικα από γράφους εξαρτήσεων οντοτήτων µε βάση παραδείγ...ISSEL
 
Σχεδίαση και ανάπτυξη συστήματος αξιολόγησης της αισθητικής διαδικτυακών εφαρ...
Σχεδίαση και ανάπτυξη συστήματος αξιολόγησης της αισθητικής διαδικτυακών εφαρ...Σχεδίαση και ανάπτυξη συστήματος αξιολόγησης της αισθητικής διαδικτυακών εφαρ...
Σχεδίαση και ανάπτυξη συστήματος αξιολόγησης της αισθητικής διαδικτυακών εφαρ...ISSEL
 
Theofilos Georgiadis: Library recommendation system for the reuse of software...
Theofilos Georgiadis: Library recommendation system for the reuse of software...Theofilos Georgiadis: Library recommendation system for the reuse of software...
Theofilos Georgiadis: Library recommendation system for the reuse of software...Manos Tsardoulias
 
Bagia Rousopoulou
Bagia RousopoulouBagia Rousopoulou
Bagia RousopoulouISSEL
 
Dontsios Dimitris
Dontsios DimitrisDontsios Dimitris
Dontsios DimitrisISSEL
 
Γεροκώστα
ΓεροκώσταΓεροκώστα
ΓεροκώσταISSEL
 
Σχεδίαση και ανάπτυξη μηχανισμού αναγνώρισης επιθέσεων ασφαλείας σε διαδικτυα...
Σχεδίαση και ανάπτυξη μηχανισμού αναγνώρισης επιθέσεων ασφαλείας σε διαδικτυα...Σχεδίαση και ανάπτυξη μηχανισμού αναγνώρισης επιθέσεων ασφαλείας σε διαδικτυα...
Σχεδίαση και ανάπτυξη μηχανισμού αναγνώρισης επιθέσεων ασφαλείας σε διαδικτυα...ISSEL
 
Εφαρµογή τεχνικών µηχανικής µάθησης και ευφυούς διαχείρισης πληροφορίας για τ...
Εφαρµογή τεχνικών µηχανικής µάθησης και ευφυούς διαχείρισης πληροφορίας για τ...Εφαρµογή τεχνικών µηχανικής µάθησης και ευφυούς διαχείρισης πληροφορίας για τ...
Εφαρµογή τεχνικών µηχανικής µάθησης και ευφυούς διαχείρισης πληροφορίας για τ...ISSEL
 

What's hot (14)

Εντοπισμός του Image Inpainting με Μεθόδους Τεχνητής Νοημοσύνης
Εντοπισμός του Image Inpainting με Μεθόδους Τεχνητής ΝοημοσύνηςΕντοπισμός του Image Inpainting με Μεθόδους Τεχνητής Νοημοσύνης
Εντοπισμός του Image Inpainting με Μεθόδους Τεχνητής Νοημοσύνης
 
Συνεχής έµµεση αυθεντικοποίηση χρηστών κινητού τηλεφώνου µέσω ανάλυσης συµπερ...
Συνεχής έµµεση αυθεντικοποίηση χρηστών κινητού τηλεφώνου µέσω ανάλυσης συµπερ...Συνεχής έµµεση αυθεντικοποίηση χρηστών κινητού τηλεφώνου µέσω ανάλυσης συµπερ...
Συνεχής έµµεση αυθεντικοποίηση χρηστών κινητού τηλεφώνου µέσω ανάλυσης συµπερ...
 
Έγκαιρη ταυτοποίηση βλαβών με αλγόριθμους Μηχανικής Mάθησης
Έγκαιρη ταυτοποίηση βλαβών με αλγόριθμους Μηχανικής MάθησηςΈγκαιρη ταυτοποίηση βλαβών με αλγόριθμους Μηχανικής Mάθησης
Έγκαιρη ταυτοποίηση βλαβών με αλγόριθμους Μηχανικής Mάθησης
 
Konstantinos Papadopoulos Diploma Thesis presenation
Konstantinos Papadopoulos Diploma Thesis presenationKonstantinos Papadopoulos Diploma Thesis presenation
Konstantinos Papadopoulos Diploma Thesis presenation
 
Εφαρμογή Τεχνικών Εξόρυξης Δεδομένων για την Εξαγωγή Προτύπων Διόρθωσης σε Σφ...
Εφαρμογή Τεχνικών Εξόρυξης Δεδομένων για την Εξαγωγή Προτύπων Διόρθωσης σε Σφ...Εφαρμογή Τεχνικών Εξόρυξης Δεδομένων για την Εξαγωγή Προτύπων Διόρθωσης σε Σφ...
Εφαρμογή Τεχνικών Εξόρυξης Δεδομένων για την Εξαγωγή Προτύπων Διόρθωσης σε Σφ...
 
Σχεδίαση και ανάπτυξη Μηχανισμού Αυτοματοποίησης παραγωγής Λογισμικού Ελέγχου...
Σχεδίαση και ανάπτυξη Μηχανισμού Αυτοματοποίησης παραγωγής Λογισμικού Ελέγχου...Σχεδίαση και ανάπτυξη Μηχανισμού Αυτοματοποίησης παραγωγής Λογισμικού Ελέγχου...
Σχεδίαση και ανάπτυξη Μηχανισμού Αυτοματοποίησης παραγωγής Λογισμικού Ελέγχου...
 
Επανοργάνωση πηγαίου κώδικα από γράφους εξαρτήσεων οντοτήτων µε βάση παραδείγ...
Επανοργάνωση πηγαίου κώδικα από γράφους εξαρτήσεων οντοτήτων µε βάση παραδείγ...Επανοργάνωση πηγαίου κώδικα από γράφους εξαρτήσεων οντοτήτων µε βάση παραδείγ...
Επανοργάνωση πηγαίου κώδικα από γράφους εξαρτήσεων οντοτήτων µε βάση παραδείγ...
 
Σχεδίαση και ανάπτυξη συστήματος αξιολόγησης της αισθητικής διαδικτυακών εφαρ...
Σχεδίαση και ανάπτυξη συστήματος αξιολόγησης της αισθητικής διαδικτυακών εφαρ...Σχεδίαση και ανάπτυξη συστήματος αξιολόγησης της αισθητικής διαδικτυακών εφαρ...
Σχεδίαση και ανάπτυξη συστήματος αξιολόγησης της αισθητικής διαδικτυακών εφαρ...
 
Theofilos Georgiadis: Library recommendation system for the reuse of software...
Theofilos Georgiadis: Library recommendation system for the reuse of software...Theofilos Georgiadis: Library recommendation system for the reuse of software...
Theofilos Georgiadis: Library recommendation system for the reuse of software...
 
Bagia Rousopoulou
Bagia RousopoulouBagia Rousopoulou
Bagia Rousopoulou
 
Dontsios Dimitris
Dontsios DimitrisDontsios Dimitris
Dontsios Dimitris
 
Γεροκώστα
ΓεροκώσταΓεροκώστα
Γεροκώστα
 
Σχεδίαση και ανάπτυξη μηχανισμού αναγνώρισης επιθέσεων ασφαλείας σε διαδικτυα...
Σχεδίαση και ανάπτυξη μηχανισμού αναγνώρισης επιθέσεων ασφαλείας σε διαδικτυα...Σχεδίαση και ανάπτυξη μηχανισμού αναγνώρισης επιθέσεων ασφαλείας σε διαδικτυα...
Σχεδίαση και ανάπτυξη μηχανισμού αναγνώρισης επιθέσεων ασφαλείας σε διαδικτυα...
 
Εφαρµογή τεχνικών µηχανικής µάθησης και ευφυούς διαχείρισης πληροφορίας για τ...
Εφαρµογή τεχνικών µηχανικής µάθησης και ευφυούς διαχείρισης πληροφορίας για τ...Εφαρµογή τεχνικών µηχανικής µάθησης και ευφυούς διαχείρισης πληροφορίας για τ...
Εφαρµογή τεχνικών µηχανικής µάθησης και ευφυούς διαχείρισης πληροφορίας για τ...
 

Similar to ΧΡΗΣΗ ΤΕΧΝΙΚΩΝ ΒΑΘΙΑΣ ΜΑΘΗΣΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΣΗΜΑΝΤΙΚΟΤΗΤΑΣ ΔΗΜΟΓΡΑΦΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΣΤΗΝ ΑΙΣΘΗΤΙΚΗ ΙΣΤΟΣΕΛΙΔΩΝ

System Development for Prediction of Static Analysis Metrics of Source Code
System Development for Prediction of Static Analysis Metrics of Source CodeSystem Development for Prediction of Static Analysis Metrics of Source Code
System Development for Prediction of Static Analysis Metrics of Source CodeISSEL
 
Ανάπτυξη συστήματος πρόβλεψης της εξέλιξης των μετρικών στατικής ανάλυσης πηγ...
Ανάπτυξη συστήματος πρόβλεψης της εξέλιξης των μετρικών στατικής ανάλυσης πηγ...Ανάπτυξη συστήματος πρόβλεψης της εξέλιξης των μετρικών στατικής ανάλυσης πηγ...
Ανάπτυξη συστήματος πρόβλεψης της εξέλιξης των μετρικών στατικής ανάλυσης πηγ...ISSEL
 
Alexandros Delitzas: Understanding website aesthetics using deep learning
Alexandros Delitzas: Understanding website aesthetics using deep learningAlexandros Delitzas: Understanding website aesthetics using deep learning
Alexandros Delitzas: Understanding website aesthetics using deep learningManos Tsardoulias
 
Applying Data Mining Techniques to Extract Fix Patterns for Static Analysis V...
Applying Data Mining Techniques to Extract Fix Patterns for Static Analysis V...Applying Data Mining Techniques to Extract Fix Patterns for Static Analysis V...
Applying Data Mining Techniques to Extract Fix Patterns for Static Analysis V...ISSEL
 
Ελένη Νησιώτη
Ελένη ΝησιώτηΕλένη Νησιώτη
Ελένη ΝησιώτηISSEL
 
Αλεξάνδρα Μπαλτζή 7485
Αλεξάνδρα Μπαλτζή 7485Αλεξάνδρα Μπαλτζή 7485
Αλεξάνδρα Μπαλτζή 7485ISSEL
 
Ifigeneia Theodoridou
Ifigeneia TheodoridouIfigeneia Theodoridou
Ifigeneia TheodoridouISSEL
 
Χατζηελευθερίου Ειρήνη
Χατζηελευθερίου ΕιρήνηΧατζηελευθερίου Ειρήνη
Χατζηελευθερίου ΕιρήνηISSEL
 
Basketball data analytics via Machine Learning techniques using the REMEDES s...
Basketball data analytics via Machine Learning techniques using the REMEDES s...Basketball data analytics via Machine Learning techniques using the REMEDES s...
Basketball data analytics via Machine Learning techniques using the REMEDES s...ISSEL
 
Georgia Pantalona
Georgia PantalonaGeorgia Pantalona
Georgia PantalonaISSEL
 
Maniadis Ioannis
Maniadis IoannisManiadis Ioannis
Maniadis IoannisISSEL
 
Εφαρµογή Τεχνικών Μηχανικής Μάθησης για την Ανάλυση Αλλαγών Κώδικα µε στόχο τ...
Εφαρµογή Τεχνικών Μηχανικής Μάθησης για την Ανάλυση Αλλαγών Κώδικα µε στόχο τ...Εφαρµογή Τεχνικών Μηχανικής Μάθησης για την Ανάλυση Αλλαγών Κώδικα µε στόχο τ...
Εφαρµογή Τεχνικών Μηχανικής Μάθησης για την Ανάλυση Αλλαγών Κώδικα µε στόχο τ...ISSEL
 
Νούτσος Αντώνης 6992
Νούτσος Αντώνης 6992Νούτσος Αντώνης 6992
Νούτσος Αντώνης 6992ISSEL
 
VET4SBO Level 2 module 2 - unit 1 - v0.9 gr
VET4SBO Level 2   module 2 - unit 1 - v0.9 grVET4SBO Level 2   module 2 - unit 1 - v0.9 gr
VET4SBO Level 2 module 2 - unit 1 - v0.9 grKarel Van Isacker
 
Ανάπτυξη Μηχανισμών Αυτοματοποίησης των διαδικασιών κατασκευής συστημάτων λο...
Ανάπτυξη Μηχανισμών Αυτοματοποίησης των  διαδικασιών κατασκευής συστημάτων λο...Ανάπτυξη Μηχανισμών Αυτοματοποίησης των  διαδικασιών κατασκευής συστημάτων λο...
Ανάπτυξη Μηχανισμών Αυτοματοποίησης των διαδικασιών κατασκευής συστημάτων λο...ISSEL
 
Ανίχνευση και Ανάλυση Συναισθήματος Πτυχών Κριτικών
Ανίχνευση και Ανάλυση Συναισθήματος Πτυχών ΚριτικώνΑνίχνευση και Ανάλυση Συναισθήματος Πτυχών Κριτικών
Ανίχνευση και Ανάλυση Συναισθήματος Πτυχών ΚριτικώνISSEL
 
Aspect-Based Sentiment Analysis for Reviews
Aspect-Based Sentiment Analysis for ReviewsAspect-Based Sentiment Analysis for Reviews
Aspect-Based Sentiment Analysis for ReviewsISSEL
 
Παρουσίαση θεμάτων διπλωματικών 2010
Παρουσίαση θεμάτων διπλωματικών 2010Παρουσίαση θεμάτων διπλωματικών 2010
Παρουσίαση θεμάτων διπλωματικών 2010ISSEL
 
Anastasios Kakouris
Anastasios KakourisAnastasios Kakouris
Anastasios KakourisISSEL
 
Maria - Christina Maniou Diploma Thesis Presentation
Maria - Christina Maniou Diploma Thesis PresentationMaria - Christina Maniou Diploma Thesis Presentation
Maria - Christina Maniou Diploma Thesis PresentationISSEL
 

Similar to ΧΡΗΣΗ ΤΕΧΝΙΚΩΝ ΒΑΘΙΑΣ ΜΑΘΗΣΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΣΗΜΑΝΤΙΚΟΤΗΤΑΣ ΔΗΜΟΓΡΑΦΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΣΤΗΝ ΑΙΣΘΗΤΙΚΗ ΙΣΤΟΣΕΛΙΔΩΝ (20)

System Development for Prediction of Static Analysis Metrics of Source Code
System Development for Prediction of Static Analysis Metrics of Source CodeSystem Development for Prediction of Static Analysis Metrics of Source Code
System Development for Prediction of Static Analysis Metrics of Source Code
 
Ανάπτυξη συστήματος πρόβλεψης της εξέλιξης των μετρικών στατικής ανάλυσης πηγ...
Ανάπτυξη συστήματος πρόβλεψης της εξέλιξης των μετρικών στατικής ανάλυσης πηγ...Ανάπτυξη συστήματος πρόβλεψης της εξέλιξης των μετρικών στατικής ανάλυσης πηγ...
Ανάπτυξη συστήματος πρόβλεψης της εξέλιξης των μετρικών στατικής ανάλυσης πηγ...
 
Alexandros Delitzas: Understanding website aesthetics using deep learning
Alexandros Delitzas: Understanding website aesthetics using deep learningAlexandros Delitzas: Understanding website aesthetics using deep learning
Alexandros Delitzas: Understanding website aesthetics using deep learning
 
Applying Data Mining Techniques to Extract Fix Patterns for Static Analysis V...
Applying Data Mining Techniques to Extract Fix Patterns for Static Analysis V...Applying Data Mining Techniques to Extract Fix Patterns for Static Analysis V...
Applying Data Mining Techniques to Extract Fix Patterns for Static Analysis V...
 
Ελένη Νησιώτη
Ελένη ΝησιώτηΕλένη Νησιώτη
Ελένη Νησιώτη
 
Αλεξάνδρα Μπαλτζή 7485
Αλεξάνδρα Μπαλτζή 7485Αλεξάνδρα Μπαλτζή 7485
Αλεξάνδρα Μπαλτζή 7485
 
Ifigeneia Theodoridou
Ifigeneia TheodoridouIfigeneia Theodoridou
Ifigeneia Theodoridou
 
Χατζηελευθερίου Ειρήνη
Χατζηελευθερίου ΕιρήνηΧατζηελευθερίου Ειρήνη
Χατζηελευθερίου Ειρήνη
 
Basketball data analytics via Machine Learning techniques using the REMEDES s...
Basketball data analytics via Machine Learning techniques using the REMEDES s...Basketball data analytics via Machine Learning techniques using the REMEDES s...
Basketball data analytics via Machine Learning techniques using the REMEDES s...
 
Georgia Pantalona
Georgia PantalonaGeorgia Pantalona
Georgia Pantalona
 
Maniadis Ioannis
Maniadis IoannisManiadis Ioannis
Maniadis Ioannis
 
Εφαρµογή Τεχνικών Μηχανικής Μάθησης για την Ανάλυση Αλλαγών Κώδικα µε στόχο τ...
Εφαρµογή Τεχνικών Μηχανικής Μάθησης για την Ανάλυση Αλλαγών Κώδικα µε στόχο τ...Εφαρµογή Τεχνικών Μηχανικής Μάθησης για την Ανάλυση Αλλαγών Κώδικα µε στόχο τ...
Εφαρµογή Τεχνικών Μηχανικής Μάθησης για την Ανάλυση Αλλαγών Κώδικα µε στόχο τ...
 
Νούτσος Αντώνης 6992
Νούτσος Αντώνης 6992Νούτσος Αντώνης 6992
Νούτσος Αντώνης 6992
 
VET4SBO Level 2 module 2 - unit 1 - v0.9 gr
VET4SBO Level 2   module 2 - unit 1 - v0.9 grVET4SBO Level 2   module 2 - unit 1 - v0.9 gr
VET4SBO Level 2 module 2 - unit 1 - v0.9 gr
 
Ανάπτυξη Μηχανισμών Αυτοματοποίησης των διαδικασιών κατασκευής συστημάτων λο...
Ανάπτυξη Μηχανισμών Αυτοματοποίησης των  διαδικασιών κατασκευής συστημάτων λο...Ανάπτυξη Μηχανισμών Αυτοματοποίησης των  διαδικασιών κατασκευής συστημάτων λο...
Ανάπτυξη Μηχανισμών Αυτοματοποίησης των διαδικασιών κατασκευής συστημάτων λο...
 
Ανίχνευση και Ανάλυση Συναισθήματος Πτυχών Κριτικών
Ανίχνευση και Ανάλυση Συναισθήματος Πτυχών ΚριτικώνΑνίχνευση και Ανάλυση Συναισθήματος Πτυχών Κριτικών
Ανίχνευση και Ανάλυση Συναισθήματος Πτυχών Κριτικών
 
Aspect-Based Sentiment Analysis for Reviews
Aspect-Based Sentiment Analysis for ReviewsAspect-Based Sentiment Analysis for Reviews
Aspect-Based Sentiment Analysis for Reviews
 
Παρουσίαση θεμάτων διπλωματικών 2010
Παρουσίαση θεμάτων διπλωματικών 2010Παρουσίαση θεμάτων διπλωματικών 2010
Παρουσίαση θεμάτων διπλωματικών 2010
 
Anastasios Kakouris
Anastasios KakourisAnastasios Kakouris
Anastasios Kakouris
 
Maria - Christina Maniou Diploma Thesis Presentation
Maria - Christina Maniou Diploma Thesis PresentationMaria - Christina Maniou Diploma Thesis Presentation
Maria - Christina Maniou Diploma Thesis Presentation
 

More from ISSEL

Ανίχνευση αντικειµένων από λίγα δείγµατα µε χρήση γραφηµάτων και τεχνικών ΜΕΤ...
Ανίχνευση αντικειµένων από λίγα δείγµατα µε χρήση γραφηµάτων και τεχνικών ΜΕΤ...Ανίχνευση αντικειµένων από λίγα δείγµατα µε χρήση γραφηµάτων και τεχνικών ΜΕΤ...
Ανίχνευση αντικειµένων από λίγα δείγµατα µε χρήση γραφηµάτων και τεχνικών ΜΕΤ...ISSEL
 
Ανάπτυξη Εφαρµογής Προφίλ Μηχανικών Λογισµικού από ∆εδοµένα Αποθετηρίων Λογισ...
Ανάπτυξη Εφαρµογής Προφίλ Μηχανικών Λογισµικού από ∆εδοµένα Αποθετηρίων Λογισ...Ανάπτυξη Εφαρµογής Προφίλ Μηχανικών Λογισµικού από ∆εδοµένα Αποθετηρίων Λογισ...
Ανάπτυξη Εφαρµογής Προφίλ Μηχανικών Λογισµικού από ∆εδοµένα Αποθετηρίων Λογισ...ISSEL
 
Ανάπτυξη ∆υναµικού και Προσωποποιηµένου Συστήµατος Ερωταπαντήσεων µε Πηγή το ...
Ανάπτυξη ∆υναµικού και Προσωποποιηµένου Συστήµατος Ερωταπαντήσεων µε Πηγή το ...Ανάπτυξη ∆υναµικού και Προσωποποιηµένου Συστήµατος Ερωταπαντήσεων µε Πηγή το ...
Ανάπτυξη ∆υναµικού και Προσωποποιηµένου Συστήµατος Ερωταπαντήσεων µε Πηγή το ...ISSEL
 
Ανάπτυξη Φίλτρων Ανεπιθύμητων Μηνυμάτων με Χρήση Τεχνικών Τεχνητής Νοημοσύνης
Ανάπτυξη Φίλτρων Ανεπιθύμητων Μηνυμάτων με Χρήση Τεχνικών Τεχνητής ΝοημοσύνηςΑνάπτυξη Φίλτρων Ανεπιθύμητων Μηνυμάτων με Χρήση Τεχνικών Τεχνητής Νοημοσύνης
Ανάπτυξη Φίλτρων Ανεπιθύμητων Μηνυμάτων με Χρήση Τεχνικών Τεχνητής ΝοημοσύνηςISSEL
 
Ανάπτυξη Ελληνικών Μοντέλων Εντοπισμού Ρητορικής Μίσους.pptx
Ανάπτυξη Ελληνικών Μοντέλων Εντοπισμού Ρητορικής Μίσους.pptxΑνάπτυξη Ελληνικών Μοντέλων Εντοπισμού Ρητορικής Μίσους.pptx
Ανάπτυξη Ελληνικών Μοντέλων Εντοπισμού Ρητορικής Μίσους.pptxISSEL
 
Σχεδιασμός και υλοποίηση πλήρους και αυτοματοποιημένου εργαλείου ελέγχων ασφά...
Σχεδιασμός και υλοποίηση πλήρους και αυτοματοποιημένου εργαλείου ελέγχων ασφά...Σχεδιασμός και υλοποίηση πλήρους και αυτοματοποιημένου εργαλείου ελέγχων ασφά...
Σχεδιασμός και υλοποίηση πλήρους και αυτοματοποιημένου εργαλείου ελέγχων ασφά...ISSEL
 
Ανάπτυξη συστήματος ιεραρχικής ομαδοποίησης και διαχείρισης κειμένων για αποκ...
Ανάπτυξη συστήματος ιεραρχικής ομαδοποίησης και διαχείρισης κειμένων για αποκ...Ανάπτυξη συστήματος ιεραρχικής ομαδοποίησης και διαχείρισης κειμένων για αποκ...
Ανάπτυξη συστήματος ιεραρχικής ομαδοποίησης και διαχείρισης κειμένων για αποκ...ISSEL
 
Ανάπτυξη γραφικής διεπαφής σε σύστημα προσομοίωσης ηλεκτρονικών αγορών με στό...
Ανάπτυξη γραφικής διεπαφής σε σύστημα προσομοίωσης ηλεκτρονικών αγορών με στό...Ανάπτυξη γραφικής διεπαφής σε σύστημα προσομοίωσης ηλεκτρονικών αγορών με στό...
Ανάπτυξη γραφικής διεπαφής σε σύστημα προσομοίωσης ηλεκτρονικών αγορών με στό...ISSEL
 
Δημιουργία Ολοκληρωμένου Συστήματος Επαλήθευσης Ορθότητας Ισχυρισμών
Δημιουργία Ολοκληρωμένου Συστήματος Επαλήθευσης Ορθότητας ΙσχυρισμώνΔημιουργία Ολοκληρωμένου Συστήματος Επαλήθευσης Ορθότητας Ισχυρισμών
Δημιουργία Ολοκληρωμένου Συστήματος Επαλήθευσης Ορθότητας ΙσχυρισμώνISSEL
 
Εξόρυξη δεδοµένων για τη δυναµική ενσωµάτωση γνώσης σε πολυπρακτορικά συστήµατα
Εξόρυξη δεδοµένων για τη δυναµική ενσωµάτωση γνώσης σε πολυπρακτορικά συστήµαταΕξόρυξη δεδοµένων για τη δυναµική ενσωµάτωση γνώσης σε πολυπρακτορικά συστήµατα
Εξόρυξη δεδοµένων για τη δυναµική ενσωµάτωση γνώσης σε πολυπρακτορικά συστήµαταISSEL
 
ΕΥΦΥΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΠΟΤΙΜΗΣΗΣ ΤΟΥ ΒΑΘΜΟΥ ΔΙΑΤΗΡΗΣΙΜΟΤΗΤΑΣ ΕΡΓΩΝ ΛΟΓΙΣΜΙΚΟΥ ΜΕ...
ΕΥΦΥΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΠΟΤΙΜΗΣΗΣ ΤΟΥ ΒΑΘΜΟΥ ΔΙΑΤΗΡΗΣΙΜΟΤΗΤΑΣ ΕΡΓΩΝ ΛΟΓΙΣΜΙΚΟΥ ΜΕ...ΕΥΦΥΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΠΟΤΙΜΗΣΗΣ ΤΟΥ ΒΑΘΜΟΥ ΔΙΑΤΗΡΗΣΙΜΟΤΗΤΑΣ ΕΡΓΩΝ ΛΟΓΙΣΜΙΚΟΥ ΜΕ...
ΕΥΦΥΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΠΟΤΙΜΗΣΗΣ ΤΟΥ ΒΑΘΜΟΥ ΔΙΑΤΗΡΗΣΙΜΟΤΗΤΑΣ ΕΡΓΩΝ ΛΟΓΙΣΜΙΚΟΥ ΜΕ...ISSEL
 
Μηχανισμοί αυτοματοποίησης διαδικασιών σχεδίασης, υλοποίησης και ανάπτυξης λο...
Μηχανισμοί αυτοματοποίησης διαδικασιών σχεδίασης, υλοποίησης και ανάπτυξης λο...Μηχανισμοί αυτοματοποίησης διαδικασιών σχεδίασης, υλοποίησης και ανάπτυξης λο...
Μηχανισμοί αυτοματοποίησης διαδικασιών σχεδίασης, υλοποίησης και ανάπτυξης λο...ISSEL
 
Εξόρυξη δεδομένων τεχνολογίας λογισμικού για επαναχρησιμοποίηση λογισμικού
Εξόρυξη δεδομένων τεχνολογίας λογισμικού για επαναχρησιμοποίηση λογισμικούΕξόρυξη δεδομένων τεχνολογίας λογισμικού για επαναχρησιμοποίηση λογισμικού
Εξόρυξη δεδομένων τεχνολογίας λογισμικού για επαναχρησιμοποίηση λογισμικούISSEL
 
Ανάλυση ∆εδοµένων ΄Εργων Λογισµικού για Ανάπτυξη σε Νέα Πεδία Εφαρµογής
Ανάλυση ∆εδοµένων ΄Εργων Λογισµικού για Ανάπτυξη σε Νέα Πεδία ΕφαρµογήςΑνάλυση ∆εδοµένων ΄Εργων Λογισµικού για Ανάπτυξη σε Νέα Πεδία Εφαρµογής
Ανάλυση ∆εδοµένων ΄Εργων Λογισµικού για Ανάπτυξη σε Νέα Πεδία ΕφαρµογήςISSEL
 
Camera-based localization of annotated objects in indoor environments
Camera-based localization of annotated objects in indoor environmentsCamera-based localization of annotated objects in indoor environments
Camera-based localization of annotated objects in indoor environmentsISSEL
 
Εντοπισμός θέσης επισημασμένου αντικειμένου σε εσωτερικό χώρο με χρήση πολλαπ...
Εντοπισμός θέσης επισημασμένου αντικειμένου σε εσωτερικό χώρο με χρήση πολλαπ...Εντοπισμός θέσης επισημασμένου αντικειμένου σε εσωτερικό χώρο με χρήση πολλαπ...
Εντοπισμός θέσης επισημασμένου αντικειμένου σε εσωτερικό χώρο με χρήση πολλαπ...ISSEL
 
Design and implementation of an automation mechanism to automatically develop...
Design and implementation of an automation mechanism to automatically develop...Design and implementation of an automation mechanism to automatically develop...
Design and implementation of an automation mechanism to automatically develop...ISSEL
 
ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΜΗΧΑΝΙΣΜΟΥ ΑΥΤΟΜΑΤΟΠΟΙΗΣΗΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΓΡΑΦΙΚΩΝ ΕΝΤΟΛ...
ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΜΗΧΑΝΙΣΜΟΥ ΑΥΤΟΜΑΤΟΠΟΙΗΣΗΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΓΡΑΦΙΚΩΝ ΕΝΤΟΛ...ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΜΗΧΑΝΙΣΜΟΥ ΑΥΤΟΜΑΤΟΠΟΙΗΣΗΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΓΡΑΦΙΚΩΝ ΕΝΤΟΛ...
ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΜΗΧΑΝΙΣΜΟΥ ΑΥΤΟΜΑΤΟΠΟΙΗΣΗΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΓΡΑΦΙΚΩΝ ΕΝΤΟΛ...ISSEL
 
Static Analysis of Python code and Identification of Potential Security Vulne...
Static Analysis of Python code and Identification of Potential Security Vulne...Static Analysis of Python code and Identification of Potential Security Vulne...
Static Analysis of Python code and Identification of Potential Security Vulne...ISSEL
 
Στατική Ανάλυση Κώδικα Python και Αναγνώριση Πιθανών Ευπαθειών Ασφαλείας για ...
Στατική Ανάλυση Κώδικα Python και Αναγνώριση Πιθανών Ευπαθειών Ασφαλείας για ...Στατική Ανάλυση Κώδικα Python και Αναγνώριση Πιθανών Ευπαθειών Ασφαλείας για ...
Στατική Ανάλυση Κώδικα Python και Αναγνώριση Πιθανών Ευπαθειών Ασφαλείας για ...ISSEL
 

More from ISSEL (20)

Ανίχνευση αντικειµένων από λίγα δείγµατα µε χρήση γραφηµάτων και τεχνικών ΜΕΤ...
Ανίχνευση αντικειµένων από λίγα δείγµατα µε χρήση γραφηµάτων και τεχνικών ΜΕΤ...Ανίχνευση αντικειµένων από λίγα δείγµατα µε χρήση γραφηµάτων και τεχνικών ΜΕΤ...
Ανίχνευση αντικειµένων από λίγα δείγµατα µε χρήση γραφηµάτων και τεχνικών ΜΕΤ...
 
Ανάπτυξη Εφαρµογής Προφίλ Μηχανικών Λογισµικού από ∆εδοµένα Αποθετηρίων Λογισ...
Ανάπτυξη Εφαρµογής Προφίλ Μηχανικών Λογισµικού από ∆εδοµένα Αποθετηρίων Λογισ...Ανάπτυξη Εφαρµογής Προφίλ Μηχανικών Λογισµικού από ∆εδοµένα Αποθετηρίων Λογισ...
Ανάπτυξη Εφαρµογής Προφίλ Μηχανικών Λογισµικού από ∆εδοµένα Αποθετηρίων Λογισ...
 
Ανάπτυξη ∆υναµικού και Προσωποποιηµένου Συστήµατος Ερωταπαντήσεων µε Πηγή το ...
Ανάπτυξη ∆υναµικού και Προσωποποιηµένου Συστήµατος Ερωταπαντήσεων µε Πηγή το ...Ανάπτυξη ∆υναµικού και Προσωποποιηµένου Συστήµατος Ερωταπαντήσεων µε Πηγή το ...
Ανάπτυξη ∆υναµικού και Προσωποποιηµένου Συστήµατος Ερωταπαντήσεων µε Πηγή το ...
 
Ανάπτυξη Φίλτρων Ανεπιθύμητων Μηνυμάτων με Χρήση Τεχνικών Τεχνητής Νοημοσύνης
Ανάπτυξη Φίλτρων Ανεπιθύμητων Μηνυμάτων με Χρήση Τεχνικών Τεχνητής ΝοημοσύνηςΑνάπτυξη Φίλτρων Ανεπιθύμητων Μηνυμάτων με Χρήση Τεχνικών Τεχνητής Νοημοσύνης
Ανάπτυξη Φίλτρων Ανεπιθύμητων Μηνυμάτων με Χρήση Τεχνικών Τεχνητής Νοημοσύνης
 
Ανάπτυξη Ελληνικών Μοντέλων Εντοπισμού Ρητορικής Μίσους.pptx
Ανάπτυξη Ελληνικών Μοντέλων Εντοπισμού Ρητορικής Μίσους.pptxΑνάπτυξη Ελληνικών Μοντέλων Εντοπισμού Ρητορικής Μίσους.pptx
Ανάπτυξη Ελληνικών Μοντέλων Εντοπισμού Ρητορικής Μίσους.pptx
 
Σχεδιασμός και υλοποίηση πλήρους και αυτοματοποιημένου εργαλείου ελέγχων ασφά...
Σχεδιασμός και υλοποίηση πλήρους και αυτοματοποιημένου εργαλείου ελέγχων ασφά...Σχεδιασμός και υλοποίηση πλήρους και αυτοματοποιημένου εργαλείου ελέγχων ασφά...
Σχεδιασμός και υλοποίηση πλήρους και αυτοματοποιημένου εργαλείου ελέγχων ασφά...
 
Ανάπτυξη συστήματος ιεραρχικής ομαδοποίησης και διαχείρισης κειμένων για αποκ...
Ανάπτυξη συστήματος ιεραρχικής ομαδοποίησης και διαχείρισης κειμένων για αποκ...Ανάπτυξη συστήματος ιεραρχικής ομαδοποίησης και διαχείρισης κειμένων για αποκ...
Ανάπτυξη συστήματος ιεραρχικής ομαδοποίησης και διαχείρισης κειμένων για αποκ...
 
Ανάπτυξη γραφικής διεπαφής σε σύστημα προσομοίωσης ηλεκτρονικών αγορών με στό...
Ανάπτυξη γραφικής διεπαφής σε σύστημα προσομοίωσης ηλεκτρονικών αγορών με στό...Ανάπτυξη γραφικής διεπαφής σε σύστημα προσομοίωσης ηλεκτρονικών αγορών με στό...
Ανάπτυξη γραφικής διεπαφής σε σύστημα προσομοίωσης ηλεκτρονικών αγορών με στό...
 
Δημιουργία Ολοκληρωμένου Συστήματος Επαλήθευσης Ορθότητας Ισχυρισμών
Δημιουργία Ολοκληρωμένου Συστήματος Επαλήθευσης Ορθότητας ΙσχυρισμώνΔημιουργία Ολοκληρωμένου Συστήματος Επαλήθευσης Ορθότητας Ισχυρισμών
Δημιουργία Ολοκληρωμένου Συστήματος Επαλήθευσης Ορθότητας Ισχυρισμών
 
Εξόρυξη δεδοµένων για τη δυναµική ενσωµάτωση γνώσης σε πολυπρακτορικά συστήµατα
Εξόρυξη δεδοµένων για τη δυναµική ενσωµάτωση γνώσης σε πολυπρακτορικά συστήµαταΕξόρυξη δεδοµένων για τη δυναµική ενσωµάτωση γνώσης σε πολυπρακτορικά συστήµατα
Εξόρυξη δεδοµένων για τη δυναµική ενσωµάτωση γνώσης σε πολυπρακτορικά συστήµατα
 
ΕΥΦΥΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΠΟΤΙΜΗΣΗΣ ΤΟΥ ΒΑΘΜΟΥ ΔΙΑΤΗΡΗΣΙΜΟΤΗΤΑΣ ΕΡΓΩΝ ΛΟΓΙΣΜΙΚΟΥ ΜΕ...
ΕΥΦΥΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΠΟΤΙΜΗΣΗΣ ΤΟΥ ΒΑΘΜΟΥ ΔΙΑΤΗΡΗΣΙΜΟΤΗΤΑΣ ΕΡΓΩΝ ΛΟΓΙΣΜΙΚΟΥ ΜΕ...ΕΥΦΥΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΠΟΤΙΜΗΣΗΣ ΤΟΥ ΒΑΘΜΟΥ ΔΙΑΤΗΡΗΣΙΜΟΤΗΤΑΣ ΕΡΓΩΝ ΛΟΓΙΣΜΙΚΟΥ ΜΕ...
ΕΥΦΥΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΠΟΤΙΜΗΣΗΣ ΤΟΥ ΒΑΘΜΟΥ ΔΙΑΤΗΡΗΣΙΜΟΤΗΤΑΣ ΕΡΓΩΝ ΛΟΓΙΣΜΙΚΟΥ ΜΕ...
 
Μηχανισμοί αυτοματοποίησης διαδικασιών σχεδίασης, υλοποίησης και ανάπτυξης λο...
Μηχανισμοί αυτοματοποίησης διαδικασιών σχεδίασης, υλοποίησης και ανάπτυξης λο...Μηχανισμοί αυτοματοποίησης διαδικασιών σχεδίασης, υλοποίησης και ανάπτυξης λο...
Μηχανισμοί αυτοματοποίησης διαδικασιών σχεδίασης, υλοποίησης και ανάπτυξης λο...
 
Εξόρυξη δεδομένων τεχνολογίας λογισμικού για επαναχρησιμοποίηση λογισμικού
Εξόρυξη δεδομένων τεχνολογίας λογισμικού για επαναχρησιμοποίηση λογισμικούΕξόρυξη δεδομένων τεχνολογίας λογισμικού για επαναχρησιμοποίηση λογισμικού
Εξόρυξη δεδομένων τεχνολογίας λογισμικού για επαναχρησιμοποίηση λογισμικού
 
Ανάλυση ∆εδοµένων ΄Εργων Λογισµικού για Ανάπτυξη σε Νέα Πεδία Εφαρµογής
Ανάλυση ∆εδοµένων ΄Εργων Λογισµικού για Ανάπτυξη σε Νέα Πεδία ΕφαρµογήςΑνάλυση ∆εδοµένων ΄Εργων Λογισµικού για Ανάπτυξη σε Νέα Πεδία Εφαρµογής
Ανάλυση ∆εδοµένων ΄Εργων Λογισµικού για Ανάπτυξη σε Νέα Πεδία Εφαρµογής
 
Camera-based localization of annotated objects in indoor environments
Camera-based localization of annotated objects in indoor environmentsCamera-based localization of annotated objects in indoor environments
Camera-based localization of annotated objects in indoor environments
 
Εντοπισμός θέσης επισημασμένου αντικειμένου σε εσωτερικό χώρο με χρήση πολλαπ...
Εντοπισμός θέσης επισημασμένου αντικειμένου σε εσωτερικό χώρο με χρήση πολλαπ...Εντοπισμός θέσης επισημασμένου αντικειμένου σε εσωτερικό χώρο με χρήση πολλαπ...
Εντοπισμός θέσης επισημασμένου αντικειμένου σε εσωτερικό χώρο με χρήση πολλαπ...
 
Design and implementation of an automation mechanism to automatically develop...
Design and implementation of an automation mechanism to automatically develop...Design and implementation of an automation mechanism to automatically develop...
Design and implementation of an automation mechanism to automatically develop...
 
ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΜΗΧΑΝΙΣΜΟΥ ΑΥΤΟΜΑΤΟΠΟΙΗΣΗΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΓΡΑΦΙΚΩΝ ΕΝΤΟΛ...
ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΜΗΧΑΝΙΣΜΟΥ ΑΥΤΟΜΑΤΟΠΟΙΗΣΗΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΓΡΑΦΙΚΩΝ ΕΝΤΟΛ...ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΜΗΧΑΝΙΣΜΟΥ ΑΥΤΟΜΑΤΟΠΟΙΗΣΗΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΓΡΑΦΙΚΩΝ ΕΝΤΟΛ...
ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΜΗΧΑΝΙΣΜΟΥ ΑΥΤΟΜΑΤΟΠΟΙΗΣΗΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΓΡΑΦΙΚΩΝ ΕΝΤΟΛ...
 
Static Analysis of Python code and Identification of Potential Security Vulne...
Static Analysis of Python code and Identification of Potential Security Vulne...Static Analysis of Python code and Identification of Potential Security Vulne...
Static Analysis of Python code and Identification of Potential Security Vulne...
 
Στατική Ανάλυση Κώδικα Python και Αναγνώριση Πιθανών Ευπαθειών Ασφαλείας για ...
Στατική Ανάλυση Κώδικα Python και Αναγνώριση Πιθανών Ευπαθειών Ασφαλείας για ...Στατική Ανάλυση Κώδικα Python και Αναγνώριση Πιθανών Ευπαθειών Ασφαλείας για ...
Στατική Ανάλυση Κώδικα Python και Αναγνώριση Πιθανών Ευπαθειών Ασφαλείας για ...
 

ΧΡΗΣΗ ΤΕΧΝΙΚΩΝ ΒΑΘΙΑΣ ΜΑΘΗΣΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΣΗΜΑΝΤΙΚΟΤΗΤΑΣ ΔΗΜΟΓΡΑΦΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΣΤΗΝ ΑΙΣΘΗΤΙΚΗ ΙΣΤΟΣΕΛΙΔΩΝ

  • 1. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ISSEL ΧΡΗΣΗ ΤΕΧΝΙΚΩΝ ΒΑΘΙΑΣ ΜΑΘΗΣΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΣΗΜΑΝΤΙΚΟΤΗΤΑΣ ΔΗΜΟΓΡΑΦΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΣΤΗΝ ΑΙΣΘΗΤΙΚΗ ΙΣΤΟΣΕΛΙΔΩΝ Εκπόνηση: Αναστάσιος Παπαδόπουλος ΑΕΜ 8407 Επιβλέποντες: Αναπ. Καθηγητής Ανδρέας Συμεωνίδης Ιούλιος 2021 Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών
  • 2. Κίνητρο • Επιρροή της αισθητικής ιστοσελίδων • Κατανόηση των δημογραφικών χαρακτηριστικών • Προσωποποιημένος σχεδιασμός ιστοσελίδας
  • 3. Σκοπός της διπλωματικής εργασίας Στόχος: Η διερεύνηση της σημαντικότητας των δημογραφικών μεταβλητών στην επίδραση της αισθητικής αντίληψης του ατόμου μέσω των αλγορίθμων βαθιάς μάθησης.
  • 4. Σύνολο Δεδομένων • 398 ιστοσελίδες • 18,448 συμμετέχοντες από 43 χώρες • 441,478 αξιολογήσεις σε κλίμακα 1-9
  • 5. Μεθοδολογία • Μελέτη της σημαντικότητας των δημογραφικών χαρακτηριστικών μέσω διάφορων αλγορίθμων • Εφαρμογή αλγορίθμων βαθιάς μάθησης: 1η προσέγγιση: Εφαρμογή τριών διαφορετικών αρχιτεκτονικών συνελικτικών νευρωνικών δικτύων στο σύνολο δεδομένων. 2η προσέγγιση: Εφαρμογή μοντέλων βαθιάς μάθησης και Συνδυαστικά μοντέλα σε δημογραφικές ομάδες
  • 6. Διαδικασία Διπλωματικής Εξαγωγή σημαντικότητας δημογραφικών μεταβλητών Διαχωρισμός του σετ δεδομένων σε 4 δημογραφικές ομάδες Χρήση ενός CNN για εκπαίδευση κάθε ομάδας Μεταφορά μάθησης Χρήση Συνδυαστικών μεθόδων για την ένωση των 4 δημογραφικών μοντέλων Πρόβλεψη σκορ αισθητικής Αξιολόγηση των μοντέλων
  • 7. Μελέτη των δημογραφικών χαρακτηριστικών • Εφαρμογή μεθόδων κωδικοποίησης κατηγορικών μεταβλητών: 1. Ordinal 2. One-Ηot 3. Target • Εξαγωγή χαρακτηριστικών μέσω των αλγορίθμων: 1. Στατιστικός Έλεγχος Χ2 (chi-square) 2. Αναδρομική Εξάλειψη Χαρακτηριστικών (Recursive feature elimination, RFE) 3. Ταξινομητής Τυχαίων Δασών (Random Forest)
  • 8. 1η Προσέγγιση • Χρήση τριών διαφορετικών αρχιτεκτονικών: μιας baseline AlexNet, της VGG16 και μιας πιο σύγχρονης αρχιτεκτονικής Xception • Μεταφορά μάθησης απο Imagenet σύνολο δεδομένων • Χρήση μέσου όρου των αξιολογήσεων στο σύνολο του σετ δεδομένων
  • 9. Αρχιτεκτονική AlexNet • 8 στρώματα • Προσαρμογή των τελευταίων στρωμάτων και προσθήκη Dropout • Συνάρτηση βελτιστοποίησης Stochastic Gradient Descent (SGD) με χρήση Nesterov momentum. Παράμετρος Τιμή Learning rate 0.001 Batch size 32 Momentum 0.9 Εποχές 95
  • 10. Αρχιτεκτονική VGG16 • 16 στρώματα • Συνελίξεις με πίνακες - φίλτρα 3x3 • Προσαρμογή των τελευταίων στρωμάτων και προσθήκη Dropout • Συνάρτηση βελτιστοποίησης RMSDrop Παράμετρος Τιμή Learning rate 0.001 Batch size 8 Εποχές 37
  • 11. Αρχιτεκτονική Xception • 36 στρώματα χωρισμένα σε 14 ενότητες • Προσαρμογή των τελευταίων στρωμάτων και προσθήκη Dropout • Συνάρτηση βελτιστοποίησης RMSDrop Παράμετρος Τιμή Learning rate 0.001 Batch size 8 Εποχές 100
  • 12. 2η Προσέγγιση • Διαχωρισμός του σετ δεδομένων σε 4 δημογραφικές ομάδες με βάση την ηλικία και το φύλο: • Δημογραφική Ομάδα 1: Άνδρες κάτω των 30 ετών • Δημογραφική Ομάδα 2: Άνδρες άνω των 30 ετών • Δημογραφική Ομάδα 3: Γυναίκες κάτω των 30 ετών • Δημογραφική Ομάδα 4: Γυναίκες άνω των 30 ετών • Χρήση της Xception αρχιτεκτονικής για εκπαίδευση του δικτύου σε κάθε ομάδα ξεχωριστά • Μεταφορά γνώσης από Imagenet σύνολο δεδομένων • Χρήση Συνδυαστικών (Ensemble) μεθόδων για την ένωση των 4 δημογραφικών μοντέλων
  • 13. Αξιολόγηση μοντέλων 1η προσέγγιση 2η προσέγγιση • Ίδιο σετ εκπαίδευσης /ελέγχου / επαλήθευσης για τα δημογραφικά μοντέλα με διαφορετικό υπολογισμό μέσων όρων για κάθε ομάδα. • Ίδιο σετ εκπαίδευσης / ελέγχου / επαλήθευσης και για τις συνδυαστικές μεθόδους στο σύνολο των δεδομένων. • Διαχωρισμός σε σύνολο εκπαίδευσης, ελέγχου και σύνολο επαλήθευσης  Σύνολο εκπαίδευσης: 300 ιστοσελίδες (75.5%)  Σύνολο ελέγχου: 40 ιστοσελίδες (10%)  Σύνολο επαλήθευσης: 58 ιστοσελίδες ( 14.5%) Μετρικές: Συντελεστής συσχέτισης Pearson (PCC) , RMSE
  • 14. Αποτελέσματα σημαντικότητας δημογραφικών μεταβλητών Χαρακτηριστικό Chi-square_all Chi- square_Website RFE Random Forest Total Ηλικία     4 Χρήση διαδικτύου     2 Γένος     2 Εκπαίδευση     2 Αγροτική Περιοχή     2 Επάγγελμα     1 Αστική Περιοχή     1 Προάστεια     1  Ηλικία το κυρίαρχο χαρακτηριστικό  Σημαντικά αλλά δευτερεύοντα τα χαρακτηριστικά του γένους, της εκπαίδευσης, της χρήσης διαδικτύου και της αγροτικής περιοχής.
  • 15. Αποτελέσματα – 1ης προσέγγισης Μοντέλο PCC RMSE AlexNet 0.75 [0.67, 0.79] 0.7 VGG16 0.77 [0.7, 0.80] 0.63 Xception 0.8 [0.73, 0.83] 0.63 AlexNet VGG16 Xception
  • 16. Σύγκριση συμπεριφοράς μοντέλων User average rating: 5.07 AlexNet prediction: 4.93 VGG16 prediction: 5.27 Xception prediction: 5.11 User average rating: 4.93 AlexNet prediction: 3.48 VGG16 prediction: 3.68 Xception prediction: 4.2
  • 17. Σύγκριση συμπεριφοράς μοντέλων User average rating: 5.59 AlexNet prediction: 5.1 VGG16 prediction: 5.28 Xception prediction: 5.16 User average rating: 6.11 AlexNet prediction: 5.1 VGG16 prediction: 5.34 Xception prediction: 5.4
  • 18. Αποτελέσματα – 2ης προσέγγισης Μοντέλο Ομάδας 2 PCC RMSE Xception εκπαιδευμένο στην ομάδα 2 0.74 [0.66, 0.78] 0.69 Xception εκπαιδευμένο σε όλο το dataset 0.79 [0.71, 0.82] 0.55 Μοντέλο Ομάδας 1 PCC RMSE Xception εκπαιδευμένο στην ομάδα 1 0.76 [0.68, 0.79] 0.79 Xception εκπαιδευμένο σε όλο το dataset 0.74 [0.66, 0.78] 0.78 Ομάδα 2: Άνδρες άνω των 30 ετών Ομάδα 1: Άνδρες κάτω των 30 ετών
  • 19. Αποτελέσματα – 2ης προσέγγισης Μοντέλο Ομάδας 4 PCC RMSE Xception εκπαιδευμένο στην ομάδα 4 0.75 [0.67, 0.79] 0.65 Xception εκπαιδευμένο σε όλο το dataset 0.77 [0.70, 0.80] 0.63 Μοντέλο Ομάδας 3 PCC RMSE Xception εκπαιδευμένο στην ομάδα 3 0.73 [0.65, 0.77] 0.82 Xception εκπαιδευμένο σε όλο το dataset 0.79 [0.71, 0.82] 0.76 Ομάδα 4: Γυναίκες άνω των 30 ετών Ομάδα 3: Γυναίκες κάτω των 30 ετών
  • 20. Αποτελέσματα Συνδυαστικών Μεθόδων Συνδυαστικές Μεθοδολογίες: - Average Ensemble: Υπολογισμός των μέσων όρων για τα 4 μοντέλα - Meta-Learner ensemble: Αλγόριθμος που μαθαίνει απο τα αποτελέσματα των προβλέψεων των 4 μοντέλων - CNN fusion: Ενωση των αποτελεσμάτων των μοντέλων σε ένα έξτρα layer και εκ νέου εκμάθηση των τελευταίων layer Ensemble Μοντέλα PCC RMSE Average 0.76 [0.68, 0.79] 0.73 Meta-Learner 0.76 [0.68, 0.79] 0.66 CNN Fusion 0.8 [0.73, 0.83] 0.6 Καλύτερη Μέθοδος
  • 21. Σύγκριση δύο προσεγγίσεων Μοντέλο PCC RMSE AlexNet 0.75 [0.67, 0.79] 0.7 Average 0.76 [0.68, 0.79] 0.73 Meta-Learner 0.76 [0.68, 0.79] 0.66 VGG16 0.77 [0.7, 0.80] 0.63 Xception 0.8 [0.73, 0.83] 0.63 CNN Fusion 0.8 [0.73, 0.83] 0.6  Ένωση των ΣΝΔ σε ένα ενιαίο παρουσιάζει τα καλύτερα αποτελέσματα.  Οι αρχιτεκτονικές Xception & VGG16 ακολουθούν με πολύ κοντινά και αξιόπιστα αποτελέσματα
  • 22. Συμπεράσματα • Μεγάλη συνεισφορά του δημογραφικού παράγοντα για κατανόηση και αντιμετώπιση υποκειμενικών ζητημάτων • Μεταφορά μάθησης συνεπάγεται μείωση του χρόνου εκπαίδευσης • Σύγχρονες αρχιτεκτονικές ΣΝΔ και Συνδυαστικοί μέθοδοι επιτυγχάνουν βελτίωση αποτελεσμάτων
  • 23. Μελλοντική Εργασία • Ενημέρωση και εκσυγχρόνιση του υπάρχοντος συνόλου δεδομένων • Μελέτη παραπάνω δημογραφικών χαρακτηριστικών και ομάδων • Μεταφορά μάθησης από πρόβλημα κοντινότερο στην αισθητική • Ενσωμάτωση των δημογραφικών μεταβλητών στα ΣΝΔ
  • 24. Ευχαριστίες Ευχαριστώ θερμά: • Τον Ανδρέα Συμεωνίδη, Αναπληρωτή Καθηγητή
  • 25. Ευχαριστώ για την προσοχή σας – Ερωτήσεις –

Editor's Notes

  1. Κίνητρο της παρούσας διπλωματικής αποτέλεσε η επιρροή που ασκεί η αισθητικής μιας ιστοσελίδας στον χρήστη. Από τα πρώτα κλασματα του δευτερολέπτου ένας χρήστης σχηματίζει άποψη για το αν του αρέσει αισθητικά ή όχι μια ιστοσελίδα. Τα πιο σημαντικά χαρακτηριστικά που στοιχειοθετούν τις αντιλήψεις του ατόμου περι αισθητικής είναι τα δημογραφικά χαρακτηριστικά που συνηθως περιλαμβανουν την ηλικια, την καταγωγη, το γενος και την εκπαίδευση. Άναδεικνύεται λοιπόν η αναγκαιότητα για κατανόηση των χαρακτηριστικών αυτών καθώς αυτή η πληροφορία θα ήταν εξαιρετικά χρήσιμη στα χέρια των σχεδιαστών ιστοσελίδων. Έτσι θα είναι εφικτός ένας προσωποποιημένος σχεδιασμός ιστοσελίδας με βάση το δημογραφικό γκρουπ που θα ήθελαν να απευθυνθούν.
  2. Σκοπός της διπλωματικής είναι η διερεύνηση της σημαντικότητας των δημογραφικών μεταβλητών και το πως αυτές επιδρούν στην αισθητική αντίληψη του ατόμου έτσι ώστε μέσω της μελέτης των αλγορίθμων βαθιάς μάθησης να προβλέπεται για κάθε ιστοσελίδα ένα αισθητικό σκορ.
  3. Το σύνολο δεδομένων που εξετάζεται αποτελείται από 398 ιστοσελίδες που χωρίζονται σε αγγλόφωνες, ξενόγλωσσές και ιστοσελίδες που έχουν προταθεί για webby awards. Συμμετείχαν ~ 18.5k χρήστες από 43 χώρες εξασφαλίζοντας ποικιλομορφία στο σύνολο δεδομένων. Για κάθε χρήστη λαμβάνουμε τα δημογραφικά χαρακτηριστικά τους και την βαθμολογία που δίνουν για τις ιστοσελίδες σε κλίμακα από 1 για χαμηλή αισθητική ως 9 για υψηλή αισθητική μιας ιστοσελίδας. Συνολικά συλλέχθηκαν ~441k αξιολογήσεις. Τέλος μέσα από το ιστόγραμμα των αξιολογήσεων παρατηρείται ότι η πληθώρα των βαθμολογιών συγκεντρώνεται στις κεντρικές τιμές μεταξύ 3 και 6 ενώ για τιμές μεγαλύτερες του 8 υπάρχουν λίγες παρατηρήσεις. Αυτή είναι μια σημαντική παρατήρηση που θα επηρεάσει έπειτα την εκπαίδευση των μοντέλων.
  4. Η μεθοδολογία διακρίνεται σε δύο κύρια στάδιο. Το πρώτο αφορά την μελέτη της σημαντικότητας των δημογραφικών χαρακτηριστικών μέσω αλγ. Μηχ. Μάθησης για το σύνολο δεδομένων που περιεγράφηκε. Το δεύτερο αφορά την εφαρμογή αλγορίθμων βαθιάς μάθησης μέσω 2 προσεγγίσεων. Η πρώτη προσέγγιση εστιάζει στην εύρεση του βέλτιστου ΣΝΔ εξετάζοντας 3 διαφορετικών αρχιτεκτονικών (AlexNet, VGG16 & Xception) τους ενώ στη δεύτερη προσέγγιση γίνεται διαχωρισμός του συνόλου δεδομένων σε δημογραφικές ομάδες στις οποίες εφαρμόζονται τόσο μοντέλα βαθίάς μάθησης όσο και συνδυαστικα μοντέλα.
  5. Μια πιο συγκεκρικμένη και συνοπτική ροή της μελέτης φαίνεται στο διάγραμμα. Αρχικά έγινε εξαγωγή των πιο σημαντικών δημογραφικών μεταβλητών, με βάση των οποίων διαχωρίστηκε το σύνολο δεδομένων σε 4 δημογραφικές ομάδες. Στη συνέχεια επιλέχθηκε ένα ΣΝΔ και εκπαιδεύθηκε σε κάθε ομάδα ξεχωριστά. Πραγματοποιήθηκε μεταφορά μάθησης για επιτάχυνση της διαδικασίας εκπαίδευσης. Έπειτα έγινε χρήση συνδυαστικών μεθόδων για την ένωση των 4 δημογραφικών μοντέλων από τις οποίες εξάγονται οι τεικές προβλέψεις για το σκορ αισθητικής των ιστοσελίδων. Τέλος πραγματοποίηθηκε αξιολόγηση και σύγκριση όλων των μοντέλων που αναπτύχθηκαν στην παρούσα διπλωματική.
  6. Το πρώτο στάδιο αφοροά τη μελετη δημ χαρακτηρ. Ένα από τα πρώτα προβλήματα που αντιμετωπίστηκαν εδώ είναι η υπρξη κατηγορικών μεταβλητών. Για να αντιμετωπιστεί αυτό το πρόβλημα εφαρμόσθηκαν ορισμένοι μέθοδοι κωδικοποιησης ο ordinal,one-hot Και target κωδικοποιητής. Ordinal κωδικοποιητής για μεταβλητές που μπορούν να ταξινομηθούν σε μια σειρά από αποψη σημαντικότητας κ νοηματος όπως είναι η εκπαίδευση. One-hot χρησιμοποιείται για ονομαστικές μεταβλητες που δν μπορουν να ταξινομ. Για κάθε κατηγορική μεταβλητή δημιουργεί μία στήλη και τους αναθέτει μια δυαδική τιμή 1 ή 0 ανάλογα με την παρουσία ή απουσία της μεταβλητής. Target μετατρέπει μια κατηγορική μεταβλητή με βάση την τιμή μιας άλλης μεταβλητής για παράδειγμα επιλέχθηκε το επάγγελμα με βάση την βαθμολογία. Στη συνέχεια κι αφού έχουμε το συνολο΄δεδομένων στην επιθυμητή μοργή έγινε εξαγωγή χαρακτηριστικών χρησιμοποιήθηκαν Ο Στατιστικός έλεγχος X2 μελετάει την σημαντικότητα μεταξύ μιας μεταβλητής και της μεταβλητής στόχου, όσο πιο υψηλή τιμή έχει τόσο πιο πολύ εξαρτάται η μεταβλητή από την μεταβλητή στόχο. Η αναδρομική Εξάλειψη χαρακτηριστικών αφαιρεί αναδρομικά χαρακτηριστικά καταλήγοντας σ εένα μικρό υποσύνολο σημαντικών χαρακτηριστικών Ο Ταξινομητής τυχαίων mesv της μετρικής GINI. Η μετρική αυτή για κάθε μεταβλητή ορίζεται ως το άθροισμα του αριθμού των διαχωρισμών (σε όλα τα δέντρα) που περιλαμβάνουν το χαρακτηριστικό, ανάλογα με τον αριθμό των δειγμάτων που χωρίζει
  7. Η πρώτη προσέγγιση εστίασε αποκλειστικά στην ανάπτυξη ΣΝΔ και στην εύρεση του καλύτερου δικτύου. Έγινε χρήση τριών διαφορετικών αρχιτεκτονικών ενός baseline AlexNet που αποτελεί την πρώτη επιλογή των υλοποιήσεων της βιβλιογραφίας, της αρχιτετκονικής VGG16 και μιας πιο σύγχρονης αρχιτεκτονικής της Xception οι οποίες δοκιμάζονται για πρώτη φορα στο συκγεκριμένι πρόβλημα. Για όλα τα δίκτυα χρησιμοποιήθηκε μεταφορά γνώσης από το imagenet σύνολο δεδομένων που αφορά αναγνώριση αντικειμένων. Τέλος τα δίκτυα αυτά εφαρμόστηκσαν σε όλο το σύνολο΄δεδομένων παίρνοντας τους μέσους όρους για κάθε ιστοσελίδα.
  8. Η δομή του AlexNet δικτύου απεικονίζεται στο σχήμα. Αποτελείται από 8 στρώματα, 5 συνελικτικά και 3 μέγιστης συγκέντρωσης. Τα τελευταία πλήρως συνδεδεμένα στρώματα όπως και το στρώμα της εξόδου προσαρμόστηκε στο πρόβλημα παλινδρόμησης που αντιμετωπίζεται. Οπότε αντικαταστάθηκαν από 2 πλήρως συνδεδεμένα στρώματα με 1024 και 512 νευρώνες με dropout 0.5 για αποφυγή υπερεκπαίδευσης. Το τελευταίο στρώμα αντικαταστάθηκε από ένα γραμμικό στρώμα με ένα μόνο νευρώνα. Η συνάρτηση βελτιστοποίησης είναι η SGD με Nesterov momentum. Οι παράμετροι εκπαίδευσης του δικτύου..
  9. Το VGG δίκτυο αποτελείται από 16 στρώματα που χωρίζονται σε 5 μπλοκ. Τα τελευταία στρώματα προσαρμόζονται με τον ίδιο τρόπο όπως το AlexNet για την αναγωγη του προβλήματος σε παλινδρόμηση. Το δίκτυο εκπαιδεύθηκε με παραμέτρους..
  10. Τέλος, η αρχιτεκτ Xception αποτελείται από 36 στρώματα χωρισμένα σε 14 ενότητες. Πρόκειται για ένα βαθύ δίκτυο που αποτελείτα από τη ροή εισόδου όπως φαίνετια στο σχήμα που περιλαμβάνει 4 ενότητες, μετά ακολουθεί η μεσαία ροή που επαναλαμβάνεται 8 φορές ενώ στο τελος ερχεται η ροή εξόδου, η οποία προσαρμόζεται όπως τ απροηγούμενα 2 δίκτυα. Οι παράμετροι εκπαίδευσης του είναι..
  11. Η 2η προσέγγιση στηρίχθηκε στα αποτελέσματα σχετικά με τα σημαντικότερα δημογραφικά χαρακτηριστικά για τον διαχωρισμό του συνολου δεδομένων σε 4 ομάδες. Ο δαιχψωρισμος εγινε με βαση την ηλικια και το φύλο 1η,2η,3η,4η. Η επιλογή του ηλικιακού ορίου έγινε με βάση την δημιουργία ίσων σε μέγεθος ομάδων. Στη συνέχεια σε κάθε ομάδα εκπαιδεύεται ένα δίκτυο Xception. Για κάθε ένα από τα δίκτυα αυτά γίνεται μεταφορά μάθησης από το imagenet σύνολο δεδομένων. Τέλος τα 4 δημογραφικά μοντέλα που αναπτύχθηκαν ενώνονται με διάφορες συνδυαστικές μεθόδους.
  12. Οσον αφορά την αξιολόγηση των μοντέλων για την 1η προσέγγιση το σύνολο δεδομένων χωρίζεται σε 300 ιστοσελίδες για το σύνολο εκπαίδευσης, 40 για σύνολο ελέγχου ενώ 58 για το σύνολο επαλήθευσης. Ο χωρισμός αυτός έγινε έτσι ώστε κάθε σύνολο να περιλαμβάνει ίδια αναλογία ιστοσελίδων αγγλικών/ξενόγλωσων αλλά και αυτές που συμμετέχουν σε Webby Awards. Από την άλλη πλευρά για την δεύτερη προσέγγιση, έγινε ο ίδιος ποσοστιαίος διαχωρισμός απλά πλέον ο υπολογισμός των μέσων όρων των ιστοσελίδων έγινε για κάθε δημογραφική ομάδα ξεχωριστά. Τέλος η αξιολόγηση των συνδυαστικών μεθόδων έγινε πάλι στο σύνολο των δεδομένων με σκοπό την αξιολόγηση και σύγκριση τους με τα μοντέλα της 1ης προσεγγισης. Οι μετρικές που χρησιμοποιούνται για την αξιολόγηση των μοντέλων είναι ο συντελεστής συσχέτισης Pearson (PCC) και η ρίζα του μέσου τετραγωνικόυ σφάλματος (RMSE) με μεγαλύτερη έμφαση να δίνεται σε πρώτη φάση σε υψηλό και θετικό συντελεστή συσχέτισης και έπειτα μας ενδιαφέρει και χαμηλό σφάλμα RMSE.
  13. Προχωρώντας εξετάζονται τα αποτελέσματα σημαντικότητας δημ. Μεταβλητών. Στον πίνακα παρουσιάζοντια τα δημογραφικά χαρακτριστικά που επιλέχθηκαν μαζί με τους αλγορίθμους εξαγωγης χαρακτηριστικων και την σημαντικότητα που τους δινει ο κάθε αλγοριθμος. Επειτα πραγματοποιείται ένας είδος ψηφοφορίας για την εξαγωγή των πιο σημαντικών χαρακτηριστικών. Αυτό που παρουσιάζεται εδώ αδιαμφισβήτητα είναι ότι η ηλικία παίζει πολύ σημαντικό ρόλο στις αξιολογήσεις αισθητικής γεγονός που φαίνεται και από την υψηλή σημαντικότητα που δέχεται από όλους τους αλγορίθμους όπως φάνηκε στν προηγούμενη διαφάνεια. Στην συνέχεια, παρατηρούμε ότι σε σημαντικότητα ακολουθούν οι ώρες χρήσης στο διαδίκτυο, το γένος, η εκπαίδευση καθώς και η προέλευση από αγροτική περιοχή. Λιγότερο σημαντικά είναι το επάγγελμα και η προέλευση από αστική περιοχή ή προάστεια.
  14. Στη συνέχεια θα εξεταστούν τα αποτελέσματα της 1ης προσέγγισης. Οπως αναφέρθηκε και προηγουμένως το μοντέλο AlexNet που βασίζεται στη βιβλιογραφία είναι το μοντέλο-οδηγός με το οποίο θα συγκριθούν τα νέα εξεταζόμενα μοντέλα VGG16 κ Xception. Από τον πίνακα παρατηρείται λοιπόν, ότι όλα τα μοντέλα παρουσιάζουν πολύ καλή συμπεριφορά με τα μοντέλα ωστόσο του VGG & Xception να είναι καλύτερα από το AlexNet. Ιδιαίτερα φαίνεται ότι το μοντέλο με τα καλύτερα αποτελέσματα είναι το Χψεπτιον με συντ συσχ 0.8 σε 95% διαστ εμπιστοσυνης και rmse 0.63. Οσον αφορά τα διαγράμματα, απεικονίζουν τις κατανομές των προβλέψεων του κάθε μοντέλου με τήν αντίστοιχη κατανομή των πραγματικών αξιολογήσεων. Αυτό που φαίντεαι και στα τρία διαγράμματα είναι πως οι προβέψεις έχουν μεγάλο ποσοστο επικάλυψης με τις πραγματικές τιμές γεγονός που αναδεικνύει την καλή προβλεπτική συμπεριφορά των μοντέλων. Στο αριστερό σχήμα έχουμε την κατανομή για το μοντέλο AlexNet, όπου παρατηρείται μια μεγάλη συγκέντρωση των προβλέψεων στις κεντρικές τιμές γυρω στο 3.5. Στο μεσαίο σχήμα φαίνονται οι προβλέψεις του VGG16, εδώ οι προβλέψεις παρουσιάζουν παρα πολυ κοντινή κατανομή με τις πραγματικές τιμές. Τέλος, στο δεξί σχήμα είναι η κατανομή του Xception όπου υπάρχει μια μεγαλύτερη συγκέντρωση των προβλέψεων στις κεντρικές τιμές αλλά αυτή τη φορά γύρω από το 4.5 κ 5.5. Και τα τρία μοντέλα αδυνατούν να προβλέψουν ικανοποιητικά τις ακραίες τιμές.
  15. Εδώ θα εξεταστει η συμπεριφορα των μοντέλων σε συγκεκριμένα παραδείγματα. Αριστερά εικόνα: όλα τα μοντέλα λειτουργούν καλά και δίνουν καλο/κοντινό σκορ. Δεξια εικόνα: ιδιαίτερη περίπτωση όπου υπάρχει πολύ κείμενο,λευκό φόντο και λίγες εικόνες, γεγονός που από βιβλιογραφία θα παρέπεμπε σε χαμηλή αισθητικά σελίδα, ωστόσο οι χρήστες έδωσαν βαθμολογία σχετικά υψηλή με 4.93. Είναι μια δύσκολη περίπτωση αναγνώρισης από τα μοντέλα ωστόσο το Xception φαίνεται ότι προβλέπει πιο κοντά στην τιμή των χρηστών ενώ τα άλλα μοντέλα κάνουν πολύ χαμηλότερες προβλέψεις.
  16. Τέλος, σε αυτό το παράδειγμα εξετάζονται οι δυο ιστοσελ΄διες συγκριτικά, κατά τις οποίες οι χρήστε ςέχουν δώσει διαφορετίκή βαθμολογία με 5.59 στην αριστερή και 6.11 στην δεξιά. Παρατηρείται ότι τα μοντέλα AlexNet kai VGG16 αδυνατούν να ξεχωρίσουν τις 2 περιπτώσεις και να αναγνωρίσουν την δεξιά εικόνα ως αισθητικά καλύτερη δίνοντας ίδιες βαθμολογίες. Από την ΄΄άλλη το Xception φαίνεται να αναγνωρίζει τη διαβάθμιση μεταξύ αυτών των ιστοσελίδων και ακόμ κι αν η πρόβλεψη απέχει από τις πραγματικές τιμές, το σημαντικό είναι ότι αναγνωρίζει την δεύτερη εικόνα ως αισηθτικά καλύτερη από την πρώτη.
  17. Στη συνέχεια μελετούνται τα αποτελέσματα της δεύτερης προσέγγισης. Αύτό που παρουσιαζεται σε κάθε πίνακα είναι η σύγκριση του δικτύου Xception που παρουσίαστηκε προηγουμένως, με ένα αντίστοιχο δίκτυο σε δομή που εκπαιδεύεται αποκλειστικά στην εκάστοτε ομάδα. Για τους άνδρες κατω των 30 ετών βλέπουμε ότι το μοντέλο που εκπαιδεύεται αποκλειστικά στη συγκεκριμένη όμάδα παρουσιάζει ελαφρώς καλύτερα αποτελέσματα από το βέλτιστο Xception. Στην άλλη περίπτωση ωστόσο, φαίνεται ότι το μοντέλο Xception σε όλο το σύνολο δεδομένων λειτουργεί καλύτερα από το δημογραφικό μοντέλο, παρουσιάζοντας αρκετά χαμηλό RMSE. Στα σχηματα φαίνονται οι συσχετίσεις των προβλ με τις πραγμ τιμές για τα δημογραφικά μοντέλα. Ένα συμπέρασμα που φαίνεται παρατηρώντας τις δύο ομάδες έιναι πως για μεγαλύτερες ηλικίες στους άντρες τα δίκτυα είναι πιο έυκολο να αναγνωρίσουν κάποια χαρακτηριστικά τους και κάνουν πιο ακριβής προβλέψεις.
  18. Στη συνέχεια παρατηρούμε τα αντίστοιχα αποτελέσματα αλλά για τις δημογραφικές ομάδες των γυναικών. Εδώ παρατηρούμε ότι και στις δύο περιπτώσεις το συνολικό μοντέλο Xception παρουσιάζει καλύτερα αποτελέσματα ενώ τα δημογραφικά μοντέλα είναι πιο «αδύναμα» συγκριτικά. Κάτι που φαίνεται κ εδώ βλέποντας το rmse είναι πως για μεγαλύτερους σε ηλικία χρήστες το μοντέλο μαθαίνει πιο εύκολα τα χαρακτηριστικά τους και κάνει καλύτερες προβλέψεις. Οπότε μπορεί να γενικευθεί πως ανεξαρτήτως φύλου, όσο μεγαλύτερο ηλικιακά είναι ο χρήστης τόσο πιο καλά προβλέπει το μοντέλο.
  19. Μετά την υλοποίηση των δημογραφικών μοντέλων κι αφού παρατηρήθηκε ότι είναι πι αδύναμα συγκριτικά με το γενικευμένο μοντέλο Xcetpio εφαρμόσθηκαν τρεις διαφορετικοί τύποι συνδυαστικών μεθόδων. Στην αρχή υλοποιήθηκε ένα απλό μοντέλο υπολογισμού των μέσων όρων των δημ μοντέλων όπου πέτυχε συντ. συσχ 0.76 και rmse 0.73. Στη συνέχεια υλοποίηθηκε μια μέθοδος μετά-μάθησης όπου οι προβλέψεις των 4 δημ μοντέλων τροφοδοτούνται σε ένα μοντέλο γραμμικής πάλινδρόμησης το οποίο εν τέλει παράγει την τελική πρόβλεψη. Παρατηρείται ότι ο συντελεστής συσχέτισης παραμένει σταθερός αλλα το rmse βελτιώνεται αισθητά. Τέλος, γίνεται συγχώνευση των 4 δημ μοντέλων σε ένα ενιαίο CNN τροφοδοτώντας τις προβλέψεις των επιμέρους μοντέλων σε ένα πλήρως συνδεδεμένο στρώμα πριν παράξει τις τελικές προβλέψεις. Το μοντέλο αυτό επανεκπαιδεύευται μόνο στα τελικά στάδια του διατηρώντας τα βάρη των υπόλοιπων μοντέλων σταθερά. Είναι φανερό πως η καλυτερη μέθοδος είναι η τελευταία της ένωσης των CNN σε ένα ενιαίο με συντ συσχ 0.8 καi rmse 0.6.
  20. Καταλήγοντας, γίνεται η σύγκριση των συνδυαστικών μοντέλων με τα μοντέλα της 1ης προσέγγισης. Παρατηρείτια ότι για τα μοντελα AlexNet και των μέσων όρων παρουσιάζουν παρόμοι συμπεριφορα με κοντινά συντ. συσχ κ rmse. Το μον΄τλεο μετα-μάθησης παρουσιάζεται λίγο βελτιωμένο με μια μείωση του rmse. Προχωρόντας στις νεες αρχιτεκτονκές, το VGG16 παρουσιάζει βελτιωμένο τόσο το σνυτ συσχ όσο και το rsme. Τελος τα καλύτερα μοντέλα, είναι το Xception και το ενιαίο CNN το οποίο εμφανίζιε ελαφρώς κα΄λύτερα αποτελέσματα λόγω της χαμηλότερης τιμής στο rmse.
  21. Τελος, αν και έχει γινει αναφορά ήδη σε αρκετά συμπεράσματα, εδώ θα αναφερθούν ορισμένα συμπερασματα σε υψηλοτερο επίπεδο. Αρχικά ειναι μεγάλη η σιυνεισφορά του δημογραιφκού παράγοντα για ….. Ζητημάτων όπως είναι η αισθητική ιστοσελ που εξετάζετια. Επίσης, η μεταφορά μάθησης βοηθάει σημαντικά στη μείωση του χρόνου εκπαίδευσης των ΣΝΔ. Τέλος, παρατηρείται ότι συγχρονες αρχιτεκοτνικε ΣΝΔ καθώς και Συνδ μεθοδοι επιτυγχανουν βελτιωση αποτελεσματων.
  22. Σχετικά με την μελλοντική εργασία, το νο 1 μέλημα είναι η ενημέρωση κ εκσυγρόνιση του υπάρχοντος συνόλου δεδομένων με ιστοσελίδες των τελευταίων ετών καθώς η αισθητική ιστοσελίδων είναι ενας κλάδος που α΄λλάζει κι αυτός γρήγορα. Επίσης η μελέτη παραπάνω δημ χαρακτηριστικών αλλα και διαχωρισμό σε ομάδες θα βοηθήσει στην ακόμη καλύτερη κατανόηση τους. Η μεταφορά΄μαθησης…. . Τέλος, η ενσωμάτωση των δημ μεταβλητων ως παραμέτρους των ΣΝΔ αποτελει επίσης μια απαιτητική εργασία η οποία ωστοσο θα μπορούσε να παρουσιάσει πολύ ενδιαφέροντα αποτελέσματα.
  23. Εδώ πέρα παρουσιάζονται τα πρώτα αποτελέσματα σχετικά με την σημαντικότητα των δημ. Μεταβλ. Στο πρώτο διάγραμμα εφαρμόσθηκε Χ2 σ΄τους μέσους όρους των ιστοσελίδων με κυρίαραχα χαρακτηρισιτκά την ηλικία και το φύλλο με μεγάλη διαφορά. Ωστόσο, η ίδια τεχνική όταν εφαρμόσθηκε σε κάθε ζευγάρι αξιολόγησης και σελίδας ξεχωριστά άρχισαν να εμφανίζεται σαν σημαντικό χαρακτηριστικό και η προέλευση του χρήστη, εάν ήταν από αγοριτική ,αστική περιοχή η τα προάστεια. Τέλος βλέπουμε ότι ο Random Forest ξεχωρίζει σαν τα τέσσερα σημαντικότερα δημογραφικά χαρακτηρισιτκά την ηλικία, το επάγγελμα, τις ώρες χρήσης του διαδικτύου και την εκπαίδευση.
  24. Επειδή είναι σε αυτή βασίζεται το Χception δν ήξερα αν πρέπει ν αναφερθει.
  25. Στη συνέχεια θα εξετάσουμε τα αποτελέσματα της 1ης προσέγγισης ξεκινόντας από το μοντέλο–οδηγό λόγω της αξιοπιστίας που προσέφερε στη βιβλιογραφία. Παρατηρείται΄ότι ο συντελεστής συσχέτισης είναι στο 0.75 με διάστημα εμπιστοσύνης [] ενώ το rmse einai 0.7 και φαίνεται και από το διάγραμμα ότι οι προβλέψεις ακολουθούν τις πραγματικές τιμές / κόκκινη γραμμή που αποτελεί τον Νο 1 στόχο όπως αναφέρθηκε. Στη συνέχεια βλε΄ποντας τις κατανομές των προβλέψεων και των πραγματικών τιμών παρατηρείται μια μεγάλη επικάλυψη των τιμών με μεγάλη συγκέντρωση των προβλέψεων στις κεντρικές τιμές γυρω στο 3.5 και αδυναμία πρόβλεψης για τις ακραίες τιμές.
  26. Το επόμενο μοντέλο που εξετάστηκε είναι το VGG16, παρατηρούμε ότι έχουμε κι εδώ υψηλό συντελέστη΄συσχέτισης 0.77 με διαστ. Εμπιστ. Ενώ το rmse είναι 0.63. Αριστερά φαίνται και εδώ ότι οι προβλέψεις ακολοθούν τις πραγματικές τιμές πολύ κλαά και μάλιστα εδώ υπάρχει μεγαλύτερη συγκέντρωση΄γύρω από τν κόκκινη γραμμή γεγονός που δείχνει τη βελτίωση του σφάλματος των προβλέψεων. Οσον αφορά τις κατναομές παρατηρούμε ότι οι προβλέψεςι παρουσιάζουν σχεδόν ίδια κατανομή με τις πραγματικές τιμές με πολύ μεγάλο ποσοστό επικάληψης. Κι εδώ παρουσιάζετια αν και πλέον σε βελτιωμένη κατάταση η συγκέντρωση στις κεντρικές τιμές και η αδυναμία πρόβλεψης στα άκρα.
  27. Τέλος, εδώ παρουσιάζονται τα αποτελέσματα του μοντέλου Xception. Όπως φαίνεται παρουσιάζει υψηλό και θετικό συντελεστή συσχέτισης 0.8 με διάστημα εμπιστοσύνης [], και rmse .63. Αυτό επιβεβαιώνεται και από το διάγραμμα της συσχέτισης των προβλέψεων με τις πραγματικές τιμές και παρατηρούμε πως οι προβλέψεις ακολουθούν τις πραγματικές τιμές σύμφωνα με την πορεία της κόκκινης γραμμής. Σχετικά με τις κατανομές παρατηρούμε κι εδώ μεγάλη επικάλυψη μεταξύ των δυο κατανομών (προβλέψεων και πραγματικών τιμών) ωστόσο υπάρχει μια μεγαλύτερη συγκέντρωση των προβλέψεων στις κεντρικές τιμές γύρω από το 4.5 κ 5.5 σε αντίθεση με το προηγούμενο μοντέλο.
  28. Συνοτπικά λοιπόν βλέποντας τα αποτελέσματα των 3 μοντέλων μπορούμε να συμπεράνουμε πως το μοντέλο Xception παρουσιάζει τα καλύτερα αποτελέσματα ως προς τις μετρικές που μελετάμε. Εχει τον καλύτερο συνδυασμό προβλέψεων με την υψηλότερη συσχέτιση 0.8 και το μικρότερο σφάλμα 0.63. Ωστόσο βλέπουμε ότι και τα άλλα μοντέλα εμφανίζουν πολύ καλά και αξιόπιστα αποτελέσματα καθώς τόσο ο συν.τ. συσχ. Οσο και το σφαλμα έχουν μικρή απόσταση από αυτά του Xcpetion.