
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
This paper presents a systematic design framework for selecting the sensors in an optimized manner, simultaneously satisfying a set of given complex system control requirements, i.e. optimum and robust performance as well as fault tolerant control for high integrity systems. It is worth noting that optimum sensor selection in control system design is often a nontrivial task. Among all candidate sensor sets, the algorithm explores and separately optimizes system performance with all the feasible sensor sets in order to identify fallback options under single or multiple sensor faults. The proposed approach combines modern robust control design, fault tolerant control, multiobjective optimization and Monte Carlo techniques. Without loss of generality, it's efficacy is tested on an electromagnetic suspension system via appropriate realistic simulations.
Be the first to like this
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment