Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

IoTest project: Semantic interoperability

IoTest project: Semantic interoperability, presented in the session: "Interoperability ", at the Internet of Things Workshop (27.10.2011), during the Future Internet Week, Poznan, Poland, 24-28 October 2011

  • Login to see the comments

  • Be the first to like this

IoTest project: Semantic interoperability

  1. 1. Semantic Interoperabilityfor IoT Services and ResourcesKlaus MoessnerCentre for Communication Systems ResearchUniversity of SurreyOctober 2011
  2. 2. Internet of Things• Internet of Things (IoT) vision:– large number of physical world objects interacting with each other and the ambient environment– data/services from these objects to provide ‘real world’ services• provide information• allow interaction
  3. 3. Requirements• structured representation of identified IoT concepts• homogeneous access mechanism to heterogeneous objects with diverse capabilities• automated machine interpretability of the possible interactions and horizontal integration with existing applications
  4. 4. How to model Things?• resource model– Gateway, sensors, processing resources• entity model– Physical world objects • Features of interest for each entity• service model– IoT services and interfaces
  5. 5. IoT Services • services are provided by a plethora of heterogeneous objects that are often directly related to the physical world• data and/or functionalities offered by such services provide information about the physical world and allow interaction with it 
  6. 6. Data and services in IoT ‐ Challenges• large‐scale networks, huge volumes of data, dynamic and sometimes unreliable data sources• dynamicity, transient data and subject to quality changes• scalability of the solutions• express‐ability and extensibility of semantics and meta‐data• heterogeneity ‐ more devices are contented, more diversity• more autonomous processes (integration, aggregation, filtering, ...) are required• management of the resources 
  7. 7. Role of metadata• semantic tagging• machine‐interpretable data annotation and resource descriptions• re‐usable ontologies• resource description framework(s)• structured data, structured query
  8. 8. In IoT semantic models are useful for:• description of various concepts and attributes in the IoT framework• providing machine interpretable and structured representation of resources/entities/services and domain knowledge• supporting automated processing and decision making over various interactions and integration with existing and new applications
  9. 9. Metadata and Semantics• to describe:– Content– Context– Resources – Entities and features of interest• to create:– Perception– Context and situation awareness• to support:– Automated processes for management of resources and decision making
  10. 10. Semantic interoperability for• resource description – SENSEI resource description, IoT‐A resource model, W3C SSN Ontology,…• entity description and domain knowledge– SENSEI entity description, IoT‐A entity model, linked data models and linked open data fro domain knowledge,…• IoT services– In IoT.est we plan to use semantic web services (extension to OWL‐S) that we have developed in the context of the IoT‐A project. 
  11. 11. 11W3C Incubator Group, SSN Ontologymakes observationsof this typewhere it isWhat itmeasuresunitsSSN-XG ontologiesSSN-XG annotations
  12. 12. Service modelEntity Model OntologyW3C SSN  OntologyResource Model OntologyOWL‐S Service Profile OntologyP(em:DomainAttribute)OWL‐S Service Grounding OntologyService Model OntologyhasInputprofile:Profileiot:ResourceAccessAtomicProcessGroundingem:DomainAttributeem:DomainAttributeP(em:DomainAttribute)hasEffecthasPreconditionhasOutputServicepresentssupportsrm:AccessInterfacehasAccessInterfacessn:Property ssn:Property ssn:Condition ssn:ConditionhasInputType hasOutputTypehasPreconditionTypehasEffectTypeiot:ObservationAreaiot:ObservationSchedulehasObservationAreahasObservationSchedulehasServiceTypeServiceTypeOWL‐S USDLWSML xxx<<instanceOf>>
  13. 13. Service instance: an exampleEntity Model OntologyW3C SSN  OntologyResource Model OntologyOWL‐S Service Profile OntologyOWL‐S Service Grounding OntologyService Model OntologyU38_TempSensorService_ProfileU38_TempSensorServiceProcessGroundingRoomU38.hasA (AmbientTempAttribute)hasOutputU38_TempSensor_ServicepresentssupportsAccessInterface_U38_temp_sensorhasAccessInterfaceU38_TempSensorService_PropertyhasOutputTypeU38_ObservationAreaU38_ObservationSchedulehasObservationArea hasObservationSchedulehasServiceTypeOWL‐SSENSEI Observation and Measurement  OntologyTemperaturesubClassOf
  14. 14. What are the challenges?• the models provide the basic description frameworks, but alignment between different models and frameworks are required. • semantics are the starting point, reasoning and interpretation of data is required for automated processes. • real interoperability happens when data/services from different frameworks and providers can be interchanged and used with minimised intervention. 
  15. 15. What are the practical steps?• linked data approach is a promising way for integrating data from different sources and interlinking semantic descriptions• alignment between different description models for IoT Services/Resources/Entities• proposing reference and abstract models for semantic descriptions in IoT (e.g. similar to the W3C SSN approach)
  16. 16. References and links• Suparna De, et al, Service modelling for the Internet of Things– http://www.iot‐‐documents/documents‐1/1/2/service‐modelling‐for‐the‐internet‐of‐things/at_download/file• W3C SSN –‐ssn‐20110628/• Claudia Villalonga, A Resource Model for the Real World Internet–
  17. 17. Thank you!