Towards Integrated 
K‐12 STEM 
Education: A 
Wheelchair Sport 
Context
“The Paralympic Movement builds a bridge 
which links sport with social awareness 
thus contributing to the development of...
Technology Has The Potential to 
Improve Lives
Dominic Nolan, Manager, STEM 
Curricula, at
the Royal Academy of 
Engineering (UK) has provided 
access to a number of 
re...
Winning Medals: Does Engineering 
Design Make a Difference?
The “Big Question”: Does 
Engineering Design Make a 
Difference?
The success of an athlete is the result
of many hours of ...
A Quick Introduction to Wheelchair 
Sport
Boston Marathon
A Quick Introduction to Wheelchair 
Sport
London 2012 wheelchair rugby (1:19 min)
http://www.youtube.com/watch?v=g1_aUAGvW...
There are different wheelchair designs
http://www.draftwheelchairs.com
1960s-style
wheelchair
modern basketball
wheelchair...
A Practical Integrated STEM 
Challenge
(Design and) make a 1:10 scale model track wheelchair
20 mm
100 mm
A Practical Integrated STEM 
Challenge
A Practical Integrated STEM 
Challenge
How far can you launch a model (track) wheelchair?
How straight can you make a mode...
Going Back to the “Big Question”: 
Does Engineering Design Make a 
Difference?
Some possible sub-questions
Why do you thin...
Some Car Enthusiasts are also Into 
Cambered Wheels!
“Winning Medals: Does 
Engineering Design Make a 
Difference?”
This resource may be used to 
address a number of science a...
Inertia
(Lateral) stability
Mass (weight)
Moment
Momentum
Newton’s laws
Point of effort
Speed
(Tangential) velocity
Torque...
Angles (in a triangle)
Arc
Average
Calculus
Circle
Circumference
Cosine
Cycle
Distance
Graph
Some Key Mathematics Concepts...
Quadrant
Repetition rate
Scale
Sector
Sine
Slope
Speed
Stopwatch
Tangent
Trigonometry
Some Key Mathematics Concepts
Vector...
The Science and Mathematics of 
Sport Wheelchair Design
Acceleration (linear or rotational)
This athlete needs to change
d...
The Science and Mathematics of 
Sport Wheelchair Design
Torque (Nm) = force (N) x distance (m)
In order to accelerate, the...
Track: The distance between the points at which a wheelchair’s two tyres
touch the ground.
The Science and Mathematics of ...
How much bigger is the basketball wheelchair’s track?
The Science and Mathematics of 
Sport Wheelchair Design
The Science and Mathematics of 
Sport Wheelchair Design
sin 20
	 cm
34.5	 cm
⇒ 12	 cm
⇒ Track 60 2 60 69 ∗ sin 20
								...
The Science and Mathematics of 
Sport Wheelchair Design
Cambering and turning moment advantage
Negatively cambering a wheelchair's wheels increases its track and creates a
turning moment advantage, which makes it more...
The Science and Mathematics of 
Sport Wheelchair Design
Turning moment (Nm) = force (N) x distance (m)
Note that a 40% of ...
30 cm ruler
The Science and Mathematics of 
Sport Wheelchair Design
As stated earlier, the “Winning Medals: Does Engineeri...
http://www.raeng.org.uk/publications/other/winning‐medals‐teacher‐version 
http://www.raeng.org.uk/publications/other/winn...
Our contact details
http://www.utas.edu.au/stem
Bernardo.LeondelaBarra@utas.edu.au
Noleine.Fitzallen@utas.edu.au
Upcoming SlideShare
Loading in …5
×

Bernardo Leon de la Barra

669 views

Published on

Bernardo Leon de la Barra

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
669
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
42
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Bernardo Leon de la Barra

  1. 1. Towards Integrated  K‐12 STEM  Education: A  Wheelchair Sport  Context
  2. 2. “The Paralympic Movement builds a bridge  which links sport with social awareness  thus contributing to the development of a  more equitable society with respect and  equal opportunities for all individuals.” International Paralympic Committee Strategic Plan, 2011‐2014 The Following Statement Does Not  Mention STEM Education
  3. 3. Technology Has The Potential to  Improve Lives
  4. 4. Dominic Nolan, Manager, STEM  Curricula, at the Royal Academy of  Engineering (UK) has provided  access to a number of  resources that are used in  some of the following slides
  5. 5. Winning Medals: Does Engineering  Design Make a Difference?
  6. 6. The “Big Question”: Does  Engineering Design Make a  Difference? The success of an athlete is the result of many hours of training, dedication and sacrifice. In the case of wheelchair athletes, there is an added dimension – the work of the team who designed the wheelchair. So, when a wheelchair athlete wins a medal, to what extent has engineering design made a difference to his/her performance? Shelly Woods Silver medal in the women’s marathon (T12-L1), London 2012. Photograph courtesy of BAE Systems plc.
  7. 7. A Quick Introduction to Wheelchair  Sport Boston Marathon
  8. 8. A Quick Introduction to Wheelchair  Sport London 2012 wheelchair rugby (1:19 min) http://www.youtube.com/watch?v=g1_aUAGvWK4 Shelly Woods “Racing to the finish line” (2:19 min) http://www.youtube.com/watch?v=1wwHCJZCUrA&feature=relmfu “Setting goals along the way” (1:58 min) www.youtube.com/watch?v=AQLRS4JRWmU&feature=relmfu
  9. 9. There are different wheelchair designs http://www.draftwheelchairs.com 1960s-style wheelchair modern basketball wheelchair modern track wheelchair A Quick Introduction to Wheelchair  Sport
  10. 10. A Practical Integrated STEM  Challenge (Design and) make a 1:10 scale model track wheelchair
  11. 11. 20 mm 100 mm A Practical Integrated STEM  Challenge
  12. 12. A Practical Integrated STEM  Challenge How far can you launch a model (track) wheelchair? How straight can you make a model (track) wheelchair travel? Test trackLauncher Track barriers Octopus strap C/G clamps/cramps Medals (targets)
  13. 13. Going Back to the “Big Question”:  Does Engineering Design Make a  Difference? Some possible sub-questions Why do you think the wheels of performance wheelchairs are cambered (angled)? What aspects of STEM do you think this design feature is based on? How much of a difference do you think cambering the wheels makes?
  14. 14. Some Car Enthusiasts are also Into  Cambered Wheels!
  15. 15. “Winning Medals: Does  Engineering Design Make a  Difference?” This resource may be used to  address a number of science and  mathematics concepts for a range  of grade levels using a socially  relevant real‐world context
  16. 16. Inertia (Lateral) stability Mass (weight) Moment Momentum Newton’s laws Point of effort Speed (Tangential) velocity Torque Turning moment  (advantage) Some Key Science Concepts Acceleration (linear  and rotational) Axis Centre of rotation (of  a mass) Energy (kinetic and  potential) Equations of motion Force Friction Fulcrum (pivot point) Gravity Impulse
  17. 17. Angles (in a triangle) Arc Average Calculus Circle Circumference Cosine Cycle Distance Graph Some Key Mathematics Concepts Frequency (Hertz) Hypotenuse Inclination Integration Measurement Outliers Right angle triangles Parallel and perpendicular  (force) components Protractor Pythagoras theorem
  18. 18. Quadrant Repetition rate Scale Sector Sine Slope Speed Stopwatch Tangent Trigonometry Some Key Mathematics Concepts Vectors Weight · Δ 1 2
  19. 19. The Science and Mathematics of  Sport Wheelchair Design Acceleration (linear or rotational) This athlete needs to change direction quickly in response to the motion of a ball or other athletes Athletes are competing with others for straight-line speed (from a start at rest)
  20. 20. The Science and Mathematics of  Sport Wheelchair Design Torque (Nm) = force (N) x distance (m) In order to accelerate, the athlete needs the help of a torque, which is a “moment” (a particular application of [upper-body muscle] force in a rotational or “twisting” fashion) used to rotate an object about an axis or pivot point (fulcrum)
  21. 21. Track: The distance between the points at which a wheelchair’s two tyres touch the ground. The Science and Mathematics of  Sport Wheelchair Design Wheelchair for playing basketballWheelchair for everyday use  (Negatively) cambering (“angling”) a wheelchair's wheels increases its track.
  22. 22. How much bigger is the basketball wheelchair’s track? The Science and Mathematics of  Sport Wheelchair Design
  23. 23. The Science and Mathematics of  Sport Wheelchair Design sin 20 cm 34.5 cm ⇒ 12 cm ⇒ Track 60 2 60 69 ∗ sin 20 84 [cm] How much bigger is the basketball wheelchair’s track?
  24. 24. The Science and Mathematics of  Sport Wheelchair Design Cambering and turning moment advantage
  25. 25. Negatively cambering a wheelchair's wheels increases its track and creates a turning moment advantage, which makes it more manoeuvrable (“agile”). This time the distance in the above equation is the measurement between the centre of rotation of the wheelchair and the point at which the wheel touches the ground. The Science and Mathematics of  Sport Wheelchair Design Turning moment (Nm) = force (N) x distance (m)
  26. 26. The Science and Mathematics of  Sport Wheelchair Design Turning moment (Nm) = force (N) x distance (m) Note that a 40% of additional turning moment is caused when the 69 cm diameter wheels of a wheelchair are cambered by 20 degrees. This means that the athlete can change direction at a rate 40% higher when she/he applies a sudden muscle force to the hand-rims of the wheelchair. This is a huge gain in rotational acceleration and hence manoeuvrability and agility.
  27. 27. 30 cm ruler The Science and Mathematics of  Sport Wheelchair Design As stated earlier, the “Winning Medals: Does Engineering Design Make a Difference?” resource briefly described in this presentation provides many more explicit connections to science and mathematics concepts.
  28. 28. http://www.raeng.org.uk/publications/other/winning‐medals‐teacher‐version  http://www.raeng.org.uk/publications/other/winning‐medals‐student‐version http://www.raeng.org.uk/education/schools/teaching-and-learning-resources/curriculum-resources
  29. 29. Our contact details http://www.utas.edu.au/stem Bernardo.LeondelaBarra@utas.edu.au Noleine.Fitzallen@utas.edu.au

×