SlideShare a Scribd company logo

Using InfluxDB for Full Observability of a SaaS Platform by Aleksandr Tavgen, Technical Architect | Playtech

Aleksandr Tavgen from Playtech, the world’s largest online gambling software supplier, will share how they are using InfluxDB 2.0, Flux, and the OpenTracingAPI to gain full observability of their platform. In addition, he will share how InfluxDB has served as the glue to cope with multiple sets of time series data, especially in the case of understanding online user activity — a use case that is normally difficult without the math functions now available with Flux.

1 of 51
Download to read offline
Using InfluxDB for Full Observability of a
SaaS Platform
Aleksandr Tavgen Playtech
vAbout me
More than 19 years of
professional experience
FinTech and Data Science
background
From Developer to SRE Engineer
Solved and automated some
problems in Operations on scale
Overall problem
• Zoo of monitoring solutions in large enterprises often distributed over
the world
• M&A transactions or distributed teams make central managing
impossible or ineffective
• For small enterprises or startups the key question is about finding the
best solution
• A lot of companies have failed this way
• A lot of anti-patterns have developed
Managing a
Zoo
• A lot of independent teams
• Everyone has some sort of
solution
• It is hard to get overall picture
of operations
• It is hard to orchestrate and
make changes
QUITE OFTEN A ZOO LOOKS LIKE THIS
Common Anti-
patterns
It is tempting to keep everything
recorded just in case
Amount of metrics in monitoring
grows exponentially
Nobody understands such huge
bunch of metrics
Engineering complexity grows as
well

Recommended

Kurt Schneider [Discover Financial] | How Discover Modernizes Observability w...
Kurt Schneider [Discover Financial] | How Discover Modernizes Observability w...Kurt Schneider [Discover Financial] | How Discover Modernizes Observability w...
Kurt Schneider [Discover Financial] | How Discover Modernizes Observability w...InfluxData
 
How to Enable Industrial Decarbonization with Node-RED and InfluxDB
How to Enable Industrial Decarbonization with Node-RED and InfluxDBHow to Enable Industrial Decarbonization with Node-RED and InfluxDB
How to Enable Industrial Decarbonization with Node-RED and InfluxDBInfluxData
 
How EnerKey Using InfluxDB Saves Customers Millions by Detecting Energy Usage...
How EnerKey Using InfluxDB Saves Customers Millions by Detecting Energy Usage...How EnerKey Using InfluxDB Saves Customers Millions by Detecting Energy Usage...
How EnerKey Using InfluxDB Saves Customers Millions by Detecting Energy Usage...InfluxData
 
How Sensor Data Can Help Manufacturers Gain Insight to Reduce Waste, Energy C...
How Sensor Data Can Help Manufacturers Gain Insight to Reduce Waste, Energy C...How Sensor Data Can Help Manufacturers Gain Insight to Reduce Waste, Energy C...
How Sensor Data Can Help Manufacturers Gain Insight to Reduce Waste, Energy C...InfluxData
 
Container Monitoring Best Practices Using AWS and InfluxData by Gunnar Aasen
Container Monitoring Best Practices Using AWS and InfluxData by Gunnar AasenContainer Monitoring Best Practices Using AWS and InfluxData by Gunnar Aasen
Container Monitoring Best Practices Using AWS and InfluxData by Gunnar AasenInfluxData
 
How Sysbee Manages Infrastructures and Provides Advanced Monitoring by Using ...
How Sysbee Manages Infrastructures and Provides Advanced Monitoring by Using ...How Sysbee Manages Infrastructures and Provides Advanced Monitoring by Using ...
How Sysbee Manages Infrastructures and Provides Advanced Monitoring by Using ...InfluxData
 
Monitoring and Troubleshooting a Real Time Pipeline
Monitoring and Troubleshooting a Real Time PipelineMonitoring and Troubleshooting a Real Time Pipeline
Monitoring and Troubleshooting a Real Time PipelineApache Apex
 
Best Practices for Scaling an InfluxEnterprise Cluster
Best Practices for Scaling an InfluxEnterprise ClusterBest Practices for Scaling an InfluxEnterprise Cluster
Best Practices for Scaling an InfluxEnterprise ClusterInfluxData
 

More Related Content

What's hot

Gain Deep Visibility into APIs and Integrations with Anypoint Monitoring
Gain Deep Visibility into APIs and Integrations with Anypoint MonitoringGain Deep Visibility into APIs and Integrations with Anypoint Monitoring
Gain Deep Visibility into APIs and Integrations with Anypoint MonitoringInfluxData
 
Thomas Lamirault_Mohamed Amine Abdessemed -A brief history of time with Apac...
Thomas Lamirault_Mohamed Amine Abdessemed  -A brief history of time with Apac...Thomas Lamirault_Mohamed Amine Abdessemed  -A brief history of time with Apac...
Thomas Lamirault_Mohamed Amine Abdessemed -A brief history of time with Apac...Flink Forward
 
Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...
Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...
Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...HostedbyConfluent
 
Flink Forward Berlin 2018: Wei-Che (Tony) Wei - "Lessons learned from Migrati...
Flink Forward Berlin 2018: Wei-Che (Tony) Wei - "Lessons learned from Migrati...Flink Forward Berlin 2018: Wei-Che (Tony) Wei - "Lessons learned from Migrati...
Flink Forward Berlin 2018: Wei-Che (Tony) Wei - "Lessons learned from Migrati...Flink Forward
 
From a Time-Series Database to a Key Operational Technology for the Enterprise
From a Time-Series Database to a Key Operational Technology for the EnterpriseFrom a Time-Series Database to a Key Operational Technology for the Enterprise
From a Time-Series Database to a Key Operational Technology for the EnterpriseInfluxData
 
InfluxDB Cloud Product Update
InfluxDB Cloud Product Update InfluxDB Cloud Product Update
InfluxDB Cloud Product Update InfluxData
 
Tim Hall [InfluxData] | InfluxDB Roadmap | InfluxDays Virtual Experience Lond...
Tim Hall [InfluxData] | InfluxDB Roadmap | InfluxDays Virtual Experience Lond...Tim Hall [InfluxData] | InfluxDB Roadmap | InfluxDays Virtual Experience Lond...
Tim Hall [InfluxData] | InfluxDB Roadmap | InfluxDays Virtual Experience Lond...InfluxData
 
SIEM Modernization: Build a Situationally Aware Organization with Apache Kafka®
SIEM Modernization: Build a Situationally Aware Organization with Apache Kafka®SIEM Modernization: Build a Situationally Aware Organization with Apache Kafka®
SIEM Modernization: Build a Situationally Aware Organization with Apache Kafka®confluent
 
T-Mobile and Elastic
T-Mobile and ElasticT-Mobile and Elastic
T-Mobile and ElasticElasticsearch
 
Apache Pinot Case Study: Building Distributed Analytics Systems Using Apache ...
Apache Pinot Case Study: Building Distributed Analytics Systems Using Apache ...Apache Pinot Case Study: Building Distributed Analytics Systems Using Apache ...
Apache Pinot Case Study: Building Distributed Analytics Systems Using Apache ...HostedbyConfluent
 
Aengus Rooney [Grafana] | What's New with Grafana and InfluxDB | InfluxDays E...
Aengus Rooney [Grafana] | What's New with Grafana and InfluxDB | InfluxDays E...Aengus Rooney [Grafana] | What's New with Grafana and InfluxDB | InfluxDays E...
Aengus Rooney [Grafana] | What's New with Grafana and InfluxDB | InfluxDays E...InfluxData
 
Flink Forward Berlin 2017 Keynote: Ferd Scheepers - Taking away customer fric...
Flink Forward Berlin 2017 Keynote: Ferd Scheepers - Taking away customer fric...Flink Forward Berlin 2017 Keynote: Ferd Scheepers - Taking away customer fric...
Flink Forward Berlin 2017 Keynote: Ferd Scheepers - Taking away customer fric...Flink Forward
 
How to Deliver a Critical and Actionable Customer-Facing Metrics Product with...
How to Deliver a Critical and Actionable Customer-Facing Metrics Product with...How to Deliver a Critical and Actionable Customer-Facing Metrics Product with...
How to Deliver a Critical and Actionable Customer-Facing Metrics Product with...InfluxData
 
Maximilian Michels - Flink and Beam
Maximilian Michels - Flink and BeamMaximilian Michels - Flink and Beam
Maximilian Michels - Flink and BeamFlink Forward
 
Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...
Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...
Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...Flink Forward
 
DataEngConf: Apache Kafka at Rocana: a scalable, distributed log for machine ...
DataEngConf: Apache Kafka at Rocana: a scalable, distributed log for machine ...DataEngConf: Apache Kafka at Rocana: a scalable, distributed log for machine ...
DataEngConf: Apache Kafka at Rocana: a scalable, distributed log for machine ...Hakka Labs
 
Microservices meetup April 2017
Microservices meetup April 2017Microservices meetup April 2017
Microservices meetup April 2017SignalFx
 
Martin Moucka [Red Hat] | How Red Hat Uses gNMI, Telegraf and InfluxDB to Gai...
Martin Moucka [Red Hat] | How Red Hat Uses gNMI, Telegraf and InfluxDB to Gai...Martin Moucka [Red Hat] | How Red Hat Uses gNMI, Telegraf and InfluxDB to Gai...
Martin Moucka [Red Hat] | How Red Hat Uses gNMI, Telegraf and InfluxDB to Gai...InfluxData
 
Time Series Analysis Using an Event Streaming Platform
 Time Series Analysis Using an Event Streaming Platform Time Series Analysis Using an Event Streaming Platform
Time Series Analysis Using an Event Streaming PlatformDr. Mirko Kämpf
 
InfluxDB Live Product Training
InfluxDB Live Product TrainingInfluxDB Live Product Training
InfluxDB Live Product TrainingInfluxData
 

What's hot (20)

Gain Deep Visibility into APIs and Integrations with Anypoint Monitoring
Gain Deep Visibility into APIs and Integrations with Anypoint MonitoringGain Deep Visibility into APIs and Integrations with Anypoint Monitoring
Gain Deep Visibility into APIs and Integrations with Anypoint Monitoring
 
Thomas Lamirault_Mohamed Amine Abdessemed -A brief history of time with Apac...
Thomas Lamirault_Mohamed Amine Abdessemed  -A brief history of time with Apac...Thomas Lamirault_Mohamed Amine Abdessemed  -A brief history of time with Apac...
Thomas Lamirault_Mohamed Amine Abdessemed -A brief history of time with Apac...
 
Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...
Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...
Safer Commutes & Streaming Data | George Padavick, Ohio Department of Transpo...
 
Flink Forward Berlin 2018: Wei-Che (Tony) Wei - "Lessons learned from Migrati...
Flink Forward Berlin 2018: Wei-Che (Tony) Wei - "Lessons learned from Migrati...Flink Forward Berlin 2018: Wei-Che (Tony) Wei - "Lessons learned from Migrati...
Flink Forward Berlin 2018: Wei-Che (Tony) Wei - "Lessons learned from Migrati...
 
From a Time-Series Database to a Key Operational Technology for the Enterprise
From a Time-Series Database to a Key Operational Technology for the EnterpriseFrom a Time-Series Database to a Key Operational Technology for the Enterprise
From a Time-Series Database to a Key Operational Technology for the Enterprise
 
InfluxDB Cloud Product Update
InfluxDB Cloud Product Update InfluxDB Cloud Product Update
InfluxDB Cloud Product Update
 
Tim Hall [InfluxData] | InfluxDB Roadmap | InfluxDays Virtual Experience Lond...
Tim Hall [InfluxData] | InfluxDB Roadmap | InfluxDays Virtual Experience Lond...Tim Hall [InfluxData] | InfluxDB Roadmap | InfluxDays Virtual Experience Lond...
Tim Hall [InfluxData] | InfluxDB Roadmap | InfluxDays Virtual Experience Lond...
 
SIEM Modernization: Build a Situationally Aware Organization with Apache Kafka®
SIEM Modernization: Build a Situationally Aware Organization with Apache Kafka®SIEM Modernization: Build a Situationally Aware Organization with Apache Kafka®
SIEM Modernization: Build a Situationally Aware Organization with Apache Kafka®
 
T-Mobile and Elastic
T-Mobile and ElasticT-Mobile and Elastic
T-Mobile and Elastic
 
Apache Pinot Case Study: Building Distributed Analytics Systems Using Apache ...
Apache Pinot Case Study: Building Distributed Analytics Systems Using Apache ...Apache Pinot Case Study: Building Distributed Analytics Systems Using Apache ...
Apache Pinot Case Study: Building Distributed Analytics Systems Using Apache ...
 
Aengus Rooney [Grafana] | What's New with Grafana and InfluxDB | InfluxDays E...
Aengus Rooney [Grafana] | What's New with Grafana and InfluxDB | InfluxDays E...Aengus Rooney [Grafana] | What's New with Grafana and InfluxDB | InfluxDays E...
Aengus Rooney [Grafana] | What's New with Grafana and InfluxDB | InfluxDays E...
 
Flink Forward Berlin 2017 Keynote: Ferd Scheepers - Taking away customer fric...
Flink Forward Berlin 2017 Keynote: Ferd Scheepers - Taking away customer fric...Flink Forward Berlin 2017 Keynote: Ferd Scheepers - Taking away customer fric...
Flink Forward Berlin 2017 Keynote: Ferd Scheepers - Taking away customer fric...
 
How to Deliver a Critical and Actionable Customer-Facing Metrics Product with...
How to Deliver a Critical and Actionable Customer-Facing Metrics Product with...How to Deliver a Critical and Actionable Customer-Facing Metrics Product with...
How to Deliver a Critical and Actionable Customer-Facing Metrics Product with...
 
Maximilian Michels - Flink and Beam
Maximilian Michels - Flink and BeamMaximilian Michels - Flink and Beam
Maximilian Michels - Flink and Beam
 
Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...
Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...
Javier Lopez_Mihail Vieru - Flink in Zalando's World of Microservices - Flink...
 
DataEngConf: Apache Kafka at Rocana: a scalable, distributed log for machine ...
DataEngConf: Apache Kafka at Rocana: a scalable, distributed log for machine ...DataEngConf: Apache Kafka at Rocana: a scalable, distributed log for machine ...
DataEngConf: Apache Kafka at Rocana: a scalable, distributed log for machine ...
 
Microservices meetup April 2017
Microservices meetup April 2017Microservices meetup April 2017
Microservices meetup April 2017
 
Martin Moucka [Red Hat] | How Red Hat Uses gNMI, Telegraf and InfluxDB to Gai...
Martin Moucka [Red Hat] | How Red Hat Uses gNMI, Telegraf and InfluxDB to Gai...Martin Moucka [Red Hat] | How Red Hat Uses gNMI, Telegraf and InfluxDB to Gai...
Martin Moucka [Red Hat] | How Red Hat Uses gNMI, Telegraf and InfluxDB to Gai...
 
Time Series Analysis Using an Event Streaming Platform
 Time Series Analysis Using an Event Streaming Platform Time Series Analysis Using an Event Streaming Platform
Time Series Analysis Using an Event Streaming Platform
 
InfluxDB Live Product Training
InfluxDB Live Product TrainingInfluxDB Live Product Training
InfluxDB Live Product Training
 

Similar to Using InfluxDB for Full Observability of a SaaS Platform by Aleksandr Tavgen, Technical Architect | Playtech

Using Time Series for Full Observability of a SaaS Platform
Using Time Series for Full Observability of a SaaS PlatformUsing Time Series for Full Observability of a SaaS Platform
Using Time Series for Full Observability of a SaaS PlatformDevOps.com
 
Observability – the good, the bad, and the ugly
Observability – the good, the bad, and the uglyObservability – the good, the bad, and the ugly
Observability – the good, the bad, and the uglyTimetrix
 
Observability - The good, the bad and the ugly Xp Days 2019 Kiev Ukraine
Observability -  The good, the bad and the ugly Xp Days 2019 Kiev Ukraine Observability -  The good, the bad and the ugly Xp Days 2019 Kiev Ukraine
Observability - The good, the bad and the ugly Xp Days 2019 Kiev Ukraine Aleksandr Tavgen
 
Building data intensive applications
Building data intensive applicationsBuilding data intensive applications
Building data intensive applicationsAmit Kejriwal
 
CQRS + Event Sourcing
CQRS + Event SourcingCQRS + Event Sourcing
CQRS + Event SourcingMike Bild
 
Brighttalk high scale low touch and other bedtime stories - final
Brighttalk   high scale low touch and other bedtime stories - finalBrighttalk   high scale low touch and other bedtime stories - final
Brighttalk high scale low touch and other bedtime stories - finalAndrew White
 
DMM9 - Data Migration Testing
DMM9 - Data Migration TestingDMM9 - Data Migration Testing
DMM9 - Data Migration TestingNick van Beest
 
Building an Experimentation Platform in Clojure
Building an Experimentation Platform in ClojureBuilding an Experimentation Platform in Clojure
Building an Experimentation Platform in ClojureSrihari Sriraman
 
A Practical Guide to Selecting a Stream Processing Technology
A Practical Guide to Selecting a Stream Processing Technology A Practical Guide to Selecting a Stream Processing Technology
A Practical Guide to Selecting a Stream Processing Technology confluent
 
Hard Truths About Streaming and Eventing (Dan Rosanova, Microsoft) Kafka Summ...
Hard Truths About Streaming and Eventing (Dan Rosanova, Microsoft) Kafka Summ...Hard Truths About Streaming and Eventing (Dan Rosanova, Microsoft) Kafka Summ...
Hard Truths About Streaming and Eventing (Dan Rosanova, Microsoft) Kafka Summ...confluent
 
Industrial Data Science
Industrial Data ScienceIndustrial Data Science
Industrial Data ScienceNiko Vuokko
 
PAC 2019 virtual Alexander Podelko
PAC 2019 virtual Alexander Podelko PAC 2019 virtual Alexander Podelko
PAC 2019 virtual Alexander Podelko Neotys
 
Do-It-Yourself ENOVIA PLM MIgration
Do-It-Yourself ENOVIA PLM MIgrationDo-It-Yourself ENOVIA PLM MIgration
Do-It-Yourself ENOVIA PLM MIgrationJoseph Lopez, M.ISM
 
Azure architecture design patterns - proven solutions to common challenges
Azure architecture design patterns - proven solutions to common challengesAzure architecture design patterns - proven solutions to common challenges
Azure architecture design patterns - proven solutions to common challengesIvo Andreev
 
Scaling Systems: Architectures that grow
Scaling Systems: Architectures that growScaling Systems: Architectures that grow
Scaling Systems: Architectures that growGibraltar Software
 
Are we there Yet?? (The long journey of Migrating from close source to opens...
Are we there Yet?? (The long journey of Migrating from close source to opens...Are we there Yet?? (The long journey of Migrating from close source to opens...
Are we there Yet?? (The long journey of Migrating from close source to opens...Marco Tusa
 
Building Big Data Streaming Architectures
Building Big Data Streaming ArchitecturesBuilding Big Data Streaming Architectures
Building Big Data Streaming ArchitecturesDavid Martínez Rego
 
Oracle Management Cloud - introduction, overview and getting started (AMIS, 2...
Oracle Management Cloud - introduction, overview and getting started (AMIS, 2...Oracle Management Cloud - introduction, overview and getting started (AMIS, 2...
Oracle Management Cloud - introduction, overview and getting started (AMIS, 2...Lucas Jellema
 
How KeyBank Used Elastic to Build an Enterprise Monitoring Solution
How KeyBank Used Elastic to Build an Enterprise Monitoring SolutionHow KeyBank Used Elastic to Build an Enterprise Monitoring Solution
How KeyBank Used Elastic to Build an Enterprise Monitoring SolutionElasticsearch
 

Similar to Using InfluxDB for Full Observability of a SaaS Platform by Aleksandr Tavgen, Technical Architect | Playtech (20)

Using Time Series for Full Observability of a SaaS Platform
Using Time Series for Full Observability of a SaaS PlatformUsing Time Series for Full Observability of a SaaS Platform
Using Time Series for Full Observability of a SaaS Platform
 
Observability – the good, the bad, and the ugly
Observability – the good, the bad, and the uglyObservability – the good, the bad, and the ugly
Observability – the good, the bad, and the ugly
 
Observability - The good, the bad and the ugly Xp Days 2019 Kiev Ukraine
Observability -  The good, the bad and the ugly Xp Days 2019 Kiev Ukraine Observability -  The good, the bad and the ugly Xp Days 2019 Kiev Ukraine
Observability - The good, the bad and the ugly Xp Days 2019 Kiev Ukraine
 
Training - What is Performance ?
Training  - What is Performance ?Training  - What is Performance ?
Training - What is Performance ?
 
Building data intensive applications
Building data intensive applicationsBuilding data intensive applications
Building data intensive applications
 
CQRS + Event Sourcing
CQRS + Event SourcingCQRS + Event Sourcing
CQRS + Event Sourcing
 
Brighttalk high scale low touch and other bedtime stories - final
Brighttalk   high scale low touch and other bedtime stories - finalBrighttalk   high scale low touch and other bedtime stories - final
Brighttalk high scale low touch and other bedtime stories - final
 
DMM9 - Data Migration Testing
DMM9 - Data Migration TestingDMM9 - Data Migration Testing
DMM9 - Data Migration Testing
 
Building an Experimentation Platform in Clojure
Building an Experimentation Platform in ClojureBuilding an Experimentation Platform in Clojure
Building an Experimentation Platform in Clojure
 
A Practical Guide to Selecting a Stream Processing Technology
A Practical Guide to Selecting a Stream Processing Technology A Practical Guide to Selecting a Stream Processing Technology
A Practical Guide to Selecting a Stream Processing Technology
 
Hard Truths About Streaming and Eventing (Dan Rosanova, Microsoft) Kafka Summ...
Hard Truths About Streaming and Eventing (Dan Rosanova, Microsoft) Kafka Summ...Hard Truths About Streaming and Eventing (Dan Rosanova, Microsoft) Kafka Summ...
Hard Truths About Streaming and Eventing (Dan Rosanova, Microsoft) Kafka Summ...
 
Industrial Data Science
Industrial Data ScienceIndustrial Data Science
Industrial Data Science
 
PAC 2019 virtual Alexander Podelko
PAC 2019 virtual Alexander Podelko PAC 2019 virtual Alexander Podelko
PAC 2019 virtual Alexander Podelko
 
Do-It-Yourself ENOVIA PLM MIgration
Do-It-Yourself ENOVIA PLM MIgrationDo-It-Yourself ENOVIA PLM MIgration
Do-It-Yourself ENOVIA PLM MIgration
 
Azure architecture design patterns - proven solutions to common challenges
Azure architecture design patterns - proven solutions to common challengesAzure architecture design patterns - proven solutions to common challenges
Azure architecture design patterns - proven solutions to common challenges
 
Scaling Systems: Architectures that grow
Scaling Systems: Architectures that growScaling Systems: Architectures that grow
Scaling Systems: Architectures that grow
 
Are we there Yet?? (The long journey of Migrating from close source to opens...
Are we there Yet?? (The long journey of Migrating from close source to opens...Are we there Yet?? (The long journey of Migrating from close source to opens...
Are we there Yet?? (The long journey of Migrating from close source to opens...
 
Building Big Data Streaming Architectures
Building Big Data Streaming ArchitecturesBuilding Big Data Streaming Architectures
Building Big Data Streaming Architectures
 
Oracle Management Cloud - introduction, overview and getting started (AMIS, 2...
Oracle Management Cloud - introduction, overview and getting started (AMIS, 2...Oracle Management Cloud - introduction, overview and getting started (AMIS, 2...
Oracle Management Cloud - introduction, overview and getting started (AMIS, 2...
 
How KeyBank Used Elastic to Build an Enterprise Monitoring Solution
How KeyBank Used Elastic to Build an Enterprise Monitoring SolutionHow KeyBank Used Elastic to Build an Enterprise Monitoring Solution
How KeyBank Used Elastic to Build an Enterprise Monitoring Solution
 

More from InfluxData

Announcing InfluxDB Clustered
Announcing InfluxDB ClusteredAnnouncing InfluxDB Clustered
Announcing InfluxDB ClusteredInfluxData
 
Best Practices for Leveraging the Apache Arrow Ecosystem
Best Practices for Leveraging the Apache Arrow EcosystemBest Practices for Leveraging the Apache Arrow Ecosystem
Best Practices for Leveraging the Apache Arrow EcosystemInfluxData
 
How Bevi Uses InfluxDB and Grafana to Improve Predictive Maintenance and Redu...
How Bevi Uses InfluxDB and Grafana to Improve Predictive Maintenance and Redu...How Bevi Uses InfluxDB and Grafana to Improve Predictive Maintenance and Redu...
How Bevi Uses InfluxDB and Grafana to Improve Predictive Maintenance and Redu...InfluxData
 
Power Your Predictive Analytics with InfluxDB
Power Your Predictive Analytics with InfluxDBPower Your Predictive Analytics with InfluxDB
Power Your Predictive Analytics with InfluxDBInfluxData
 
Build an Edge-to-Cloud Solution with the MING Stack
Build an Edge-to-Cloud Solution with the MING StackBuild an Edge-to-Cloud Solution with the MING Stack
Build an Edge-to-Cloud Solution with the MING StackInfluxData
 
Meet the Founders: An Open Discussion About Rewriting Using Rust
Meet the Founders: An Open Discussion About Rewriting Using RustMeet the Founders: An Open Discussion About Rewriting Using Rust
Meet the Founders: An Open Discussion About Rewriting Using RustInfluxData
 
Introducing InfluxDB Cloud Dedicated
Introducing InfluxDB Cloud DedicatedIntroducing InfluxDB Cloud Dedicated
Introducing InfluxDB Cloud DedicatedInfluxData
 
Gain Better Observability with OpenTelemetry and InfluxDB
Gain Better Observability with OpenTelemetry and InfluxDB Gain Better Observability with OpenTelemetry and InfluxDB
Gain Better Observability with OpenTelemetry and InfluxDB InfluxData
 
How a Heat Treating Plant Ensures Tight Process Control and Exceptional Quali...
How a Heat Treating Plant Ensures Tight Process Control and Exceptional Quali...How a Heat Treating Plant Ensures Tight Process Control and Exceptional Quali...
How a Heat Treating Plant Ensures Tight Process Control and Exceptional Quali...InfluxData
 
How Delft University's Engineering Students Make Their EV Formula-Style Race ...
How Delft University's Engineering Students Make Their EV Formula-Style Race ...How Delft University's Engineering Students Make Their EV Formula-Style Race ...
How Delft University's Engineering Students Make Their EV Formula-Style Race ...InfluxData
 
Start Automating InfluxDB Deployments at the Edge with balena
Start Automating InfluxDB Deployments at the Edge with balena Start Automating InfluxDB Deployments at the Edge with balena
Start Automating InfluxDB Deployments at the Edge with balena InfluxData
 
Understanding InfluxDB’s New Storage Engine
Understanding InfluxDB’s New Storage EngineUnderstanding InfluxDB’s New Storage Engine
Understanding InfluxDB’s New Storage EngineInfluxData
 
Streamline and Scale Out Data Pipelines with Kubernetes, Telegraf, and InfluxDB
Streamline and Scale Out Data Pipelines with Kubernetes, Telegraf, and InfluxDBStreamline and Scale Out Data Pipelines with Kubernetes, Telegraf, and InfluxDB
Streamline and Scale Out Data Pipelines with Kubernetes, Telegraf, and InfluxDBInfluxData
 
Ward Bowman [PTC] | ThingWorx Long-Term Data Storage with InfluxDB | InfluxDa...
Ward Bowman [PTC] | ThingWorx Long-Term Data Storage with InfluxDB | InfluxDa...Ward Bowman [PTC] | ThingWorx Long-Term Data Storage with InfluxDB | InfluxDa...
Ward Bowman [PTC] | ThingWorx Long-Term Data Storage with InfluxDB | InfluxDa...InfluxData
 
Scott Anderson [InfluxData] | New & Upcoming Flux Features | InfluxDays 2022
Scott Anderson [InfluxData] | New & Upcoming Flux Features | InfluxDays 2022Scott Anderson [InfluxData] | New & Upcoming Flux Features | InfluxDays 2022
Scott Anderson [InfluxData] | New & Upcoming Flux Features | InfluxDays 2022InfluxData
 
Steinkamp, Clifford [InfluxData] | Closing Thoughts | InfluxDays 2022
Steinkamp, Clifford [InfluxData] | Closing Thoughts | InfluxDays 2022Steinkamp, Clifford [InfluxData] | Closing Thoughts | InfluxDays 2022
Steinkamp, Clifford [InfluxData] | Closing Thoughts | InfluxDays 2022InfluxData
 
Steinkamp, Clifford [InfluxData] | Welcome to InfluxDays 2022 - Day 2 | Influ...
Steinkamp, Clifford [InfluxData] | Welcome to InfluxDays 2022 - Day 2 | Influ...Steinkamp, Clifford [InfluxData] | Welcome to InfluxDays 2022 - Day 2 | Influ...
Steinkamp, Clifford [InfluxData] | Welcome to InfluxDays 2022 - Day 2 | Influ...InfluxData
 
Steinkamp, Clifford [InfluxData] | Closing Thoughts Day 1 | InfluxDays 2022
Steinkamp, Clifford [InfluxData] | Closing Thoughts Day 1 | InfluxDays 2022Steinkamp, Clifford [InfluxData] | Closing Thoughts Day 1 | InfluxDays 2022
Steinkamp, Clifford [InfluxData] | Closing Thoughts Day 1 | InfluxDays 2022InfluxData
 
Paul Dix [InfluxData] The Journey of InfluxDB | InfluxDays 2022
Paul Dix [InfluxData] The Journey of InfluxDB | InfluxDays 2022Paul Dix [InfluxData] The Journey of InfluxDB | InfluxDays 2022
Paul Dix [InfluxData] The Journey of InfluxDB | InfluxDays 2022InfluxData
 
Jay Clifford [InfluxData] | Tips & Tricks for Analyzing IIoT in Real-Time | I...
Jay Clifford [InfluxData] | Tips & Tricks for Analyzing IIoT in Real-Time | I...Jay Clifford [InfluxData] | Tips & Tricks for Analyzing IIoT in Real-Time | I...
Jay Clifford [InfluxData] | Tips & Tricks for Analyzing IIoT in Real-Time | I...InfluxData
 

More from InfluxData (20)

Announcing InfluxDB Clustered
Announcing InfluxDB ClusteredAnnouncing InfluxDB Clustered
Announcing InfluxDB Clustered
 
Best Practices for Leveraging the Apache Arrow Ecosystem
Best Practices for Leveraging the Apache Arrow EcosystemBest Practices for Leveraging the Apache Arrow Ecosystem
Best Practices for Leveraging the Apache Arrow Ecosystem
 
How Bevi Uses InfluxDB and Grafana to Improve Predictive Maintenance and Redu...
How Bevi Uses InfluxDB and Grafana to Improve Predictive Maintenance and Redu...How Bevi Uses InfluxDB and Grafana to Improve Predictive Maintenance and Redu...
How Bevi Uses InfluxDB and Grafana to Improve Predictive Maintenance and Redu...
 
Power Your Predictive Analytics with InfluxDB
Power Your Predictive Analytics with InfluxDBPower Your Predictive Analytics with InfluxDB
Power Your Predictive Analytics with InfluxDB
 
Build an Edge-to-Cloud Solution with the MING Stack
Build an Edge-to-Cloud Solution with the MING StackBuild an Edge-to-Cloud Solution with the MING Stack
Build an Edge-to-Cloud Solution with the MING Stack
 
Meet the Founders: An Open Discussion About Rewriting Using Rust
Meet the Founders: An Open Discussion About Rewriting Using RustMeet the Founders: An Open Discussion About Rewriting Using Rust
Meet the Founders: An Open Discussion About Rewriting Using Rust
 
Introducing InfluxDB Cloud Dedicated
Introducing InfluxDB Cloud DedicatedIntroducing InfluxDB Cloud Dedicated
Introducing InfluxDB Cloud Dedicated
 
Gain Better Observability with OpenTelemetry and InfluxDB
Gain Better Observability with OpenTelemetry and InfluxDB Gain Better Observability with OpenTelemetry and InfluxDB
Gain Better Observability with OpenTelemetry and InfluxDB
 
How a Heat Treating Plant Ensures Tight Process Control and Exceptional Quali...
How a Heat Treating Plant Ensures Tight Process Control and Exceptional Quali...How a Heat Treating Plant Ensures Tight Process Control and Exceptional Quali...
How a Heat Treating Plant Ensures Tight Process Control and Exceptional Quali...
 
How Delft University's Engineering Students Make Their EV Formula-Style Race ...
How Delft University's Engineering Students Make Their EV Formula-Style Race ...How Delft University's Engineering Students Make Their EV Formula-Style Race ...
How Delft University's Engineering Students Make Their EV Formula-Style Race ...
 
Start Automating InfluxDB Deployments at the Edge with balena
Start Automating InfluxDB Deployments at the Edge with balena Start Automating InfluxDB Deployments at the Edge with balena
Start Automating InfluxDB Deployments at the Edge with balena
 
Understanding InfluxDB’s New Storage Engine
Understanding InfluxDB’s New Storage EngineUnderstanding InfluxDB’s New Storage Engine
Understanding InfluxDB’s New Storage Engine
 
Streamline and Scale Out Data Pipelines with Kubernetes, Telegraf, and InfluxDB
Streamline and Scale Out Data Pipelines with Kubernetes, Telegraf, and InfluxDBStreamline and Scale Out Data Pipelines with Kubernetes, Telegraf, and InfluxDB
Streamline and Scale Out Data Pipelines with Kubernetes, Telegraf, and InfluxDB
 
Ward Bowman [PTC] | ThingWorx Long-Term Data Storage with InfluxDB | InfluxDa...
Ward Bowman [PTC] | ThingWorx Long-Term Data Storage with InfluxDB | InfluxDa...Ward Bowman [PTC] | ThingWorx Long-Term Data Storage with InfluxDB | InfluxDa...
Ward Bowman [PTC] | ThingWorx Long-Term Data Storage with InfluxDB | InfluxDa...
 
Scott Anderson [InfluxData] | New & Upcoming Flux Features | InfluxDays 2022
Scott Anderson [InfluxData] | New & Upcoming Flux Features | InfluxDays 2022Scott Anderson [InfluxData] | New & Upcoming Flux Features | InfluxDays 2022
Scott Anderson [InfluxData] | New & Upcoming Flux Features | InfluxDays 2022
 
Steinkamp, Clifford [InfluxData] | Closing Thoughts | InfluxDays 2022
Steinkamp, Clifford [InfluxData] | Closing Thoughts | InfluxDays 2022Steinkamp, Clifford [InfluxData] | Closing Thoughts | InfluxDays 2022
Steinkamp, Clifford [InfluxData] | Closing Thoughts | InfluxDays 2022
 
Steinkamp, Clifford [InfluxData] | Welcome to InfluxDays 2022 - Day 2 | Influ...
Steinkamp, Clifford [InfluxData] | Welcome to InfluxDays 2022 - Day 2 | Influ...Steinkamp, Clifford [InfluxData] | Welcome to InfluxDays 2022 - Day 2 | Influ...
Steinkamp, Clifford [InfluxData] | Welcome to InfluxDays 2022 - Day 2 | Influ...
 
Steinkamp, Clifford [InfluxData] | Closing Thoughts Day 1 | InfluxDays 2022
Steinkamp, Clifford [InfluxData] | Closing Thoughts Day 1 | InfluxDays 2022Steinkamp, Clifford [InfluxData] | Closing Thoughts Day 1 | InfluxDays 2022
Steinkamp, Clifford [InfluxData] | Closing Thoughts Day 1 | InfluxDays 2022
 
Paul Dix [InfluxData] The Journey of InfluxDB | InfluxDays 2022
Paul Dix [InfluxData] The Journey of InfluxDB | InfluxDays 2022Paul Dix [InfluxData] The Journey of InfluxDB | InfluxDays 2022
Paul Dix [InfluxData] The Journey of InfluxDB | InfluxDays 2022
 
Jay Clifford [InfluxData] | Tips & Tricks for Analyzing IIoT in Real-Time | I...
Jay Clifford [InfluxData] | Tips & Tricks for Analyzing IIoT in Real-Time | I...Jay Clifford [InfluxData] | Tips & Tricks for Analyzing IIoT in Real-Time | I...
Jay Clifford [InfluxData] | Tips & Tricks for Analyzing IIoT in Real-Time | I...
 

Recently uploaded

IT Nation Evolve event 2024 - Quarter 1
IT Nation Evolve event 2024  - Quarter 1IT Nation Evolve event 2024  - Quarter 1
IT Nation Evolve event 2024 - Quarter 1Inbay UK
 
Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...Product School
 
"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura RochniakFwdays
 
"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor Fesenko"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor FesenkoFwdays
 
How AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptxHow AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptxInfosec
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfSafe Software
 
Confoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data scienceConfoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data scienceSusan Ibach
 
Bit N Build Poland
Bit N Build PolandBit N Build Poland
Bit N Build PolandGDSC PJATK
 
Act Like an Owner, Challenge Like a VC by former CPO, Tripadvisor
Act Like an Owner,  Challenge Like a VC by former CPO, TripadvisorAct Like an Owner,  Challenge Like a VC by former CPO, Tripadvisor
Act Like an Owner, Challenge Like a VC by former CPO, TripadvisorProduct School
 
Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...
Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...
Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...Product School
 
Enterprise Architecture As Strategy - Book Review
Enterprise Architecture As Strategy - Book ReviewEnterprise Architecture As Strategy - Book Review
Enterprise Architecture As Strategy - Book ReviewAshraf Fouad
 
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERNRonnelBaroc
 
How to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanHow to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanDatabarracks
 
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...Product School
 
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, GoogleISPMAIndia
 
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...ISPMAIndia
 
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxLeveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxVotarikari Shravan
 
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...DianaGray10
 
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...Neo4j
 

Recently uploaded (20)

IT Nation Evolve event 2024 - Quarter 1
IT Nation Evolve event 2024  - Quarter 1IT Nation Evolve event 2024  - Quarter 1
IT Nation Evolve event 2024 - Quarter 1
 
Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...
 
"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak
 
"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor Fesenko"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor Fesenko
 
How AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptxHow AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptx
 
In sharing we trust. Taking advantage of a diverse consortium to build a tran...
In sharing we trust. Taking advantage of a diverse consortium to build a tran...In sharing we trust. Taking advantage of a diverse consortium to build a tran...
In sharing we trust. Taking advantage of a diverse consortium to build a tran...
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
 
Confoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data scienceConfoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data science
 
Bit N Build Poland
Bit N Build PolandBit N Build Poland
Bit N Build Poland
 
Act Like an Owner, Challenge Like a VC by former CPO, Tripadvisor
Act Like an Owner,  Challenge Like a VC by former CPO, TripadvisorAct Like an Owner,  Challenge Like a VC by former CPO, Tripadvisor
Act Like an Owner, Challenge Like a VC by former CPO, Tripadvisor
 
Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...
Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...
Synergy in Leadership and Product Excellence: A Blueprint for Growth by CPO, ...
 
Enterprise Architecture As Strategy - Book Review
Enterprise Architecture As Strategy - Book ReviewEnterprise Architecture As Strategy - Book Review
Enterprise Architecture As Strategy - Book Review
 
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
 
How to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanHow to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response Plan
 
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
Harnessing the Power of GenAI for Exceptional Product Outcomes by Booking.com...
 
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
 
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
 
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxLeveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
 
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
Automation Ops Series: Session 1 - Introduction and setup DevOps for UiPath p...
 
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
 

Using InfluxDB for Full Observability of a SaaS Platform by Aleksandr Tavgen, Technical Architect | Playtech

  • 1. Using InfluxDB for Full Observability of a SaaS Platform Aleksandr Tavgen Playtech
  • 2. vAbout me More than 19 years of professional experience FinTech and Data Science background From Developer to SRE Engineer Solved and automated some problems in Operations on scale
  • 3. Overall problem • Zoo of monitoring solutions in large enterprises often distributed over the world • M&A transactions or distributed teams make central managing impossible or ineffective • For small enterprises or startups the key question is about finding the best solution • A lot of companies have failed this way • A lot of anti-patterns have developed
  • 4. Managing a Zoo • A lot of independent teams • Everyone has some sort of solution • It is hard to get overall picture of operations • It is hard to orchestrate and make changes
  • 5. QUITE OFTEN A ZOO LOOKS LIKE THIS
  • 6. Common Anti- patterns It is tempting to keep everything recorded just in case Amount of metrics in monitoring grows exponentially Nobody understands such huge bunch of metrics Engineering complexity grows as well
  • 7. Uber case – 9 billion of metrics / 1000 + instances for monitoring
  • 8. IF YOU NEED 9 BILLION OF METRICS, YOU ARE PROBABLY WRONG
  • 9. Dashboards problem • Proliferating amount of metrics leads to unusable dashboards • How can one observe 9 billion metrics? • Quite often it looks like spaghetti • It is ok to pursue anti-pattern for approx. 1,5 years • GitLab Dashboards are a good example
  • 14. Actually not • Dashboards are very useful when you know where and when to watch • Our brain can recognize and process visual patterns more effectively • But only when you know what you are looking for and when
  • 15. Queries vs. Dashboards Querying your data requires more cognitive effort than a quick look at dashboards Metrics are a low resolution of your system’s dynamics Metrics should not replace logs It is not necessary to have millions of them
  • 16. What are Incidents • Something that has impact on operational/business level • Incidents are expensive • Incidents come with credibility costs
  • 17. COST OF AN HOUR OF DOWNTIME 2017-2018 https://www.statista.com/statistics/753938/worldwide-enterprise-server-hourly-downtime-cost/
  • 18. • Change • Network Failure • Bug • Human Factor • Unspecified • Hardware Failure Causes of outage
  • 21. What is it all about? • Any reduction of outage/incident timeline results in significant positive financial impact • It is about credibility as well • And your DevOps teams feel less pain and toil on their way
  • 22. Focus on KPI metrics
  • 23. Metrics • It is almost impossible to operate on billions of metrics • In case of normal system behavior there will always be outliers in real production data • Therefore, not all outliers should be flagged as anomalous incidents • Etsy Kale project case
  • 25. Paradigm Shift • The main paradigm shift comes from the fields of infrastructure and architecture • Cloud architectures, microservices, Kubernetes, and immutable infrastructure have changed the way companies build and operate systems • Virtualization, containerization and orchestration frameworks abstract infra level • Moving towards abstraction from the underlying hardware and networking means that we must focus on ensuring that our applications work as intended in the context of our business processes.
  • 26. KPI monitoring • KPI metrics are related to the core business operations • It could be logins, active sessions, any domain specific operations • Heavily seasoned • Static thresholds can’t help here
  • 27. Our Solution • Narrowing down the amount of metrics required to defined KPI metrics • We combined push/pull model • Local push • Central pull • And we created a ML-based system, which learns your metrics’ behavior
  • 29. Overwhelming results • Red area – Customer Detection • Blue area – Own Observation (toil) • Orange line – Central Grafana Introduced • Green line – ML based solution in prod Customer Detection has dropped to low percentage points
  • 30. General view • Finding anomalies on metrics • Finding regularities on a higher level • Combining events from organization internals (changes/deployments) • Stream processing architectures
  • 31. Why do we need time-series storage? • We have unpredicted delay on networking • Operating worldwide is a problem • CAP theorem • You can receive signals from the past • But you should look into the future too • How long should this window be in the future?
  • 32. Why not Kafka and all those classical streaming? • Frameworks like Storm, Flink - oriented on tuples not time-ordered events • We do not want to process everything • A lot of events are needed on-demand • It is ok to lose some signals in favor of performance • And we still have signals from the past
  • 33. Why Influx v 2.0 • Flux • Better isolation • Central storage for metrics, events, traces • Same streaming paradigm • There is no mismatch between metaquering and quering
  • 34. Taking a higher picture • Finding anomalies on a lower level • Tracing • Event logs • Finding regularities between them • Building a topology • We can call it AIOps as well
  • 35. Open Tracing • Tracing is a higher resolution of your system’s dynamics • Distributed tracing can show you unknown- unknowns • It reduces Investigation part of Incident Timeline • There is a good OSS Jaeger implementation • Influx v 2.0 – the supported backend storage
  • 36. Jaeger with Influxv2.0 as a Backend storage • Real prod case • Every minute approx. 8000 traces • Performance issue with limitation on I/O ops connections • Bursts of context switches on the kernel level
  • 37. Impact on the particular execution flow • Db query is quite constant • Processing time in normal case - 1-3 ms • After a process context switch - more than 40 ms
  • 38. Flux • Multi-source joining • Same functional composition paradigm • Easy to test hypothesis • You can combine metrics, event logs, and traces • Data transformation based on conditions
  • 39. Real incident We need some statistical models to operate on raw data
  • 41. • Let’s check relations between them • Looks more like stationary time – series • Easier to model • Let’s check relations between them • Looks more like stationary time – series • Easier to model
  • 42. Random Walk • Processes have a lot of random factors • Random Walk modelling • X(t) = X(t-1) + Er(t) • Er(t) = X(t) - X(t-1) • Stationary time-series is very easy to model • Do not need statistical models • Just reservoir with variance
  • 43. Er(t) = X(t) - X(t-1) Er(t) = discrete derivative of (X)
  • 44. On a larger scale • Simple to model • Cheap memory reservoirs models • Very fast
  • 45. Security case • Failed logins ratio is related to overall statistical activity • People make type-o’s • Simple thresholds not working
  • 47. Real Alerts related to attacks on Login Service
  • 48. Combing all together Adding Traces and Events can reduce Investigation part Can pinpoint to Root Cause
  • 49. •It is all about semantics •Datacenters, sites, services •Graph topology based on time-series data
  • 50. Timetrix • As a lot people involved in it from different companies • We decided to Open Source core engine • Integrations which are specific to domain companies could be easily added • We plan to launch Q3/Q4 2019 • Core engine is written in Java • Great Kudos to bonitoo.io team for great drivers

Editor's Notes

  1. Virtualization, containerization, and orchestration frameworks are responsible for providing computational resources and handling failures creates an abstraction layer for hardware and networking. Moving towards abstraction from the underlying hardware and networking means that we must focus on ensuring that our applications work as intended in the context of our business processes.