Biodegradable Polymeric by 이흐완 히다얏


Published on

Published in: Technology, Business
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • Biodegradable Polymeric by 이흐완 히다얏

    1. 1. Biodegradable Polymeric Biomaterial Presented by: Ikhwan Hidayat ( 이흐완 히다얏 )
    2. 2. Contents <ul><li>Introduction & Application </li></ul><ul><li>Poly ( α -esters) </li></ul><ul><ul><li>Polyglycolide (PGA) </li></ul></ul><ul><ul><li>Polylactide (PLA) </li></ul></ul><ul><ul><li>Polycaprolactone </li></ul></ul><ul><li>Other Polymers under Development </li></ul><ul><li>Biodegradation Mechanism </li></ul><ul><li>Packaging & Sterilization </li></ul><ul><li>Surface Modification for Biodegradable Polymer </li></ul>
    3. 3. Introduction <ul><li>The current trend, Biodegradable are more favorable than biostable material for biomedical applications. </li></ul><ul><li>Important properties of a biodegradable polymer: </li></ul><ul><ul><li>Appropriate mechanical properties. </li></ul></ul><ul><ul><li>Does not evoke inflame or toxic response. </li></ul></ul><ul><ul><li>Have acceptable shelf life. </li></ul></ul><ul><ul><li>Degradation time should match the healing. </li></ul></ul><ul><ul><li>Fully metabolized & Easily sterilized. </li></ul></ul><ul><li>Classifications </li></ul><ul><ul><li>Hydrolytically & Enzymatically degradable </li></ul></ul>
    4. 4. Applications <ul><li>Large Implants: Orthopedic fixation devices; bone screws , bone plates </li></ul><ul><li>Small implants: Sutures, Staples, Nano/Micro-sized drug delivery </li></ul><ul><li>Dental devices: as a void filler and as a guided-tissue-regeneration (GTR) </li></ul><ul><li>Multifilament meshes or porous structures for tissue engineering </li></ul>Figure 1. Biodegradable intravascular stent
    5. 5. Poly( α -esters) <ul><li>Thermoplastic polymer with hydrolytically labile aliphatic ester linkages in their backbone. </li></ul><ul><ul><li>Only short aliphatic chains can degrade over the time required for biomedical application </li></ul></ul><ul><li>Good biocompatibility and controllable degradation profiles </li></ul><ul><li>Poly( α -esters) based on polylactide (PLA), polyglycolide (PGA), and polycaprolactone (PCL) have been extensively employed as biomaterials. </li></ul>Figure 2. Polyester based, meniscus repair devices
    6. 6. Polyglycolide (PGA) <ul><li>Highly crystalline polymer </li></ul><ul><ul><li>Excellent mechanical properties </li></ul></ul><ul><li>Excellent fiber forming ability </li></ul><ul><ul><li>Initially investigated for developing resorbable sutures </li></ul></ul><ul><ul><li>DEXON, approved 1960 </li></ul></ul><ul><li>In the body, PGA are broken down into glycine </li></ul><ul><ul><li>Excreted or converted </li></ul></ul><ul><li>Applications: </li></ul><ul><ul><li>Scaffolding matrices for tissue regeneration </li></ul></ul><ul><ul><li>Bone Internal Fixation Devices (Biofix) </li></ul></ul>
    7. 7. Polylactides (PLA) <ul><li>Lactide is a chiral molecule </li></ul><ul><ul><li>L-lactide (PLLA) </li></ul></ul><ul><ul><li>DL-lactide (PDLLA) </li></ul></ul><ul><li>PLLA: slow degradation time, crystalline, good tensile strength, low elongation and high modulus </li></ul><ul><ul><li>Load bearing applications </li></ul></ul><ul><ul><li>Scaffold for developing ligament replacement </li></ul></ul><ul><li>Poly DL-lactide (PDLLA): amorphous, lower strength & higher elongation, rapid degradation time </li></ul><ul><ul><li>Drug delivery system </li></ul></ul>
    8. 8. Poly( ε -caprolactone) (PCL) <ul><li>Semicrystalline polyester </li></ul><ul><ul><li>Highly processible, </li></ul></ul><ul><ul><li>Low melting point (55-60 o C) & </li></ul></ul><ul><ul><li>Glass transition temperature (-60 o C) </li></ul></ul><ul><li>Low tensile strength but extremely high elongation </li></ul><ul><li>Slow rate degradation, high permeability to many drugs and non-toxicity </li></ul><ul><ul><li>Long-term drug/vaccine delivery devices </li></ul></ul><ul><ul><li>A copolymer of ε -caprolactone with glycolide, as a monofilament suture (Monacryl) </li></ul></ul>
    9. 9. Other Polymers under Development <ul><li>Low-cost biodegradable polyemer </li></ul><ul><ul><li>Synthesis of polymers using microorganism </li></ul></ul><ul><ul><li>Polyhydroxybutyrate (PHB) & polyhydroxyvalerate (PHV), commercially available as a copolymer named Biopol </li></ul></ul><ul><ul><ul><li>Require enzymes for biodegradation </li></ul></ul></ul><ul><ul><ul><li>Under consideration for several biomedical application </li></ul></ul></ul><ul><li>Synthetic poly(amino acids) </li></ul><ul><ul><li>Wide occurrence in nature </li></ul></ul><ul><ul><li>High crystalline: difficult to process and slow degradation </li></ul></ul><ul><ul><li>Synthesizing “pseudo” poly(amino acids) using tyrosine derivative </li></ul></ul>
    10. 10. Biodegradation Mechanism <ul><ul><li>Second phase </li></ul></ul><ul><ul><ul><li>Enzymatic attack and metabolization of the fragments occur </li></ul></ul></ul><ul><ul><ul><li>Resulting in a rapid loss of polymer mass, this type of degradation is also called “ bulk erosion ” </li></ul></ul></ul><ul><li>Simple chemical hydrolysis of the hydrolytically unstable backbone </li></ul><ul><ul><li>First phase </li></ul></ul><ul><ul><ul><li>Water penetrates the bulk of the device, attacking the chemical bonds </li></ul></ul></ul><ul><ul><ul><li>Reduction in molecular weight &the physical properties </li></ul></ul></ul>
    11. 11. Biodegradation Mechanism <ul><li>Surface Erosion </li></ul><ul><ul><li>Polymer penetrates the device, slower than the rate of conversion of the polymer into water-soluble materials. </li></ul></ul><ul><ul><li>Results in the device thinning over time while maintaining its bulk integrity. </li></ul></ul><ul><li>Related factors that resulting degradation: </li></ul><ul><ul><li>Chemical Stability </li></ul></ul><ul><ul><li>The presence of catalyst, additives, impurities. </li></ul></ul><ul><ul><li>The geometry of the device </li></ul></ul>
    12. 12. Packaging <ul><li>Hydrolytically unstable </li></ul><ul><ul><li>the presence of moisture can degrade the biodegradable polymers </li></ul></ul><ul><li>The polymers are quickly packaged after manufacture </li></ul><ul><ul><li>Double-bagged, under an inert atmosphere or vacuum </li></ul></ul><ul><li>Final packaging </li></ul><ul><ul><li>Placing the device in a moisture proof container </li></ul></ul><ul><li>Sterilization </li></ul><ul><ul><li>Biodegradable polymer is sterilized by gamma or E-beam irradiation or Ethylene Oxide (EtO) gas </li></ul></ul><ul><ul><li>Temperature and humidity should be considered </li></ul></ul>
    13. 13. “ Biomimetic calcium phosphate coating on electrospun- poly( ε -caprolactone) scaffolds for bone tissue engineering” <ul><li>PCL scaffolds with uniform fibrous structure were fabricated by electrospinning. </li></ul><ul><li>Before CaP coating, a plasma surface treatment was applied to clean and activate the PCL surface for calcium and phosphate ion grafting. </li></ul><ul><li>The treated PCL scaffolds were immersed in 10× simulated body fluid (SBF10) for varying time periods. </li></ul>By: F. Yang, J.G.C. Wolke, J.A. Jansen
    14. 14. <ul><li>The deposited calcium phosphate coatings improved the wettability of the electrospun PCL scaffold. </li></ul><ul><li>As the mineralized electrospun scaffold has a similar structure as the natural bone, it is expected to be a potential cell carrier in bone tissue engineering. </li></ul>characterization <ul><li>Scanning Electron Microscopy (SEM) </li></ul><ul><li>Gravimetric measurement </li></ul><ul><li>X-ray Diffraction </li></ul><ul><li>Energy Dispersive Spectroscopy </li></ul><ul><li>Water wettability test </li></ul>
    15. 15. Appendix a. Properties of common biodegradable polymers Polymer Melting Point (°C) Glass-Transition Temp (°C) Modulus (Gpa) a Degradation Time (months) b PGA 225—230 35—40 7.0 6 to 12 PLLA 173—178 60—65 2.7 >24 DLLA Amorphous 55—60 1.9 12 to 16 PCL 58—63 (—65)— (—60) 0.4 >24 PDO N/A (—10)— 0 1.5 6 to 12 PGA-TMC N/A N/A 2.4 6 to 12 85/15 DLPLG Amorphous 50—55 2.0 5 to 6 75/25 DLPLG Amorphous 50—55 2.0 4 to 5 65/35 DLPLG Amorphous 45—50 2.0 3 to 4 50/50 DLPLG Amorphous 45—50 2.0 1 to 2 a Tensile or flexural modulus. b Time to complete mass loss. Rate also depends on part geometry.
    16. 16. Appendix b. Commercial biodegradable medical products Application Trade Name Composition a Manufacturer   Dexon PGA Davis and Geck   Maxon PGA-TMC Davis and Geck   Vicryl PGA-LPLA Ethicon Sutures Monocryl PGA-PCL Ethicon   PDS PDO Ethicon   Polysorb PGA-LPLA U.S. Surgical   Biosyn PDO-PGA-TMC U.S. Surgical   PGA Suture PGA Lukens   Sysorb DLPLA Synos   Endofix PGA-TMC or LPLA Acufex   Arthrex LPLA Arthrex Interference screws Bioscrew LPLA Linvatec   Phusiline LPLA-DLPLA Phusis   Biologically Quiet PGA-DLPLA Instrument Makar Suture anchor Bio-Statak LPLA Zimmer   Suretac PGA-TMC Acufex Anastomosis clip Lactasorb LPLA Davis and Geck Anastomosis ring Valtrac PGA Davis and Geck Dental Drilac DLPLA THM Biomedical Angioplastic plug Angioseal PGA-DLPLA AHP Screw SmartScrew LPLA Bionx Pins and rods Biofix LPLA or PGA Bionx   Resor-Pin LPLA-DLPLA Geistlich Tack SmartTack LPLA Bionx Plates, mesh, screws LactoSorb PGA-LPLA Lorenz
    17. 17. 감사합니다 <ul><li>Thank you for your attention…. </li></ul><ul><li>- Questions & Discussion - </li></ul>[back to index of contents] mail to: