Quarter: 2                                         Topic:                           Time Frame: 50 days                   ...
from the lowest trophic level)B. Food pyramidC. Increasing food production                                                ...
information)APPLICATIONPropose ways on howunderstanding of life energyprocesses can be used in life.Criteria:a. Appropriat...
production through life energyprocesses.Criteria:a. Insightful ( providing informationabout the pros and cons of bothtradi...
b. Receptive (accepting readily/willingly a farmer’s feeling about theless yield of products due to someconditions such as...
Stage 3Teaching/Learning Sequence:EXPLORE As part of initial activities, learners shall be given an overview of life energ...
(Suggested Strategies: KWL, Focus Group Discussion, brainstorming, think-pair & square, dyads, round robin,   etc.)6. gene...
FIRM UP Varied learning experiences shall be introduced to help learners disprove alternative conceptions, examine/assess ...
Directions: Classify the main parts of the plant according to the following functions.                             a. leav...
(Main Idea: The light-dependent reactions, or light reactions, constitute the first stage of photosynthesis, the        pr...
7. compare the light and dark reactions   (Main Ideas: The light reactions produce oxygen gas and convert ADP and NADH+ in...
10. revisit prior knowledge, alternative conceptions and/or TI on light reactions, if any.        (Suggested Activity: The...
glucose. They may write questions that they could use as they interview the teachers, students, school officials, etc.    ...
gametophyte in a process termed double fertilization. The resulting zygote develops into an embryo, while the        tripl...
18. interview a farmer/plant breeder and write down his or her best practices        (Main Idea: Farmers use varied farmin...
21. identify the raw materials and end products of respiration   (Main Idea: Cellular respiration requires a food molecule...
24. cite situations that show how respiration occurs in organisms        (Main Ideas: Aerobic respiration takes place in a...
(Suggested Activity: The following resources can be used to get samples of activities: internet, library, interview       ...
to the consumers. The flow of energy between organisms can be shown by a food chain or a food web.)        (Suggested Stra...
32. revisit prior knowledge, alternative conceptions and/ or TI on food pyramid, if any.        (Suggested Activity: The t...
DEEPEN Here, learners shall be engaged in understanding scientific knowledge which includes the processing and making mean...
To draw out the essential understanding, learners shall:     9. contemplate on the essential question “How does understand...
•     use of certain techniques and practices      •     manifestations of life energy processes    3. conduct of classroo...
•   5 petri dishes•   Iodine solution•   Paper towels•   15-to-20 gallon plastic bin with lid•   1/2-inch and 3/4-inch dri...
Sci q2   life & energy
Upcoming SlideShare
Loading in …5
×

Sci q2 life & energy

1,049 views

Published on

Sci q2 life & energy

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,049
On SlideShare
0
From Embeds
0
Number of Embeds
123
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Sci q2 life & energy

  1. 1. Quarter: 2 Topic: Time Frame: 50 days Life Energy Processes and Food Production Stage 1Content Standard: Performance Standard:The learner demonstrates understanding of the value of life Learners in groups use certain techniques or practices toenergy processes as used in improving certain techniques or produce innovative, market viable, dependable andpractices and developing beneficial products. profitable materials based on their understanding life energy processes.Essential Understanding(s): Essential Question(s):Life energy processes can be used in (a) using certaintechniques or practices and (b) developing beneficial Why are life energy processes valuable?products.Learners will know: Learners will be able to:I. From Light Energy to Chemical Energy of Food 1. discuss how certain techniques and practices areA. Introduction: plant parts and functions used in enhancing photosynthesis for increased foodB. Photosynthesis production 1. Light-dependent reactions 2. Light-independent reactions 2. demonstrate how respiration can be used inC. Glucose and production of food molecules developing products particularly local onesD. Plant reproductionE. Plant propagation/ Techniques or practices for production 3. infer the advantage of deriving food source from the(sustainable farming, urban gardening, hydroponics, vertical lowest trophic level as energy flows in thefarming, bonsai-making) ecosystem.II. From Chemical Energy of Food to Chemical Energy of ATPA. Aerobic respirationB. Anarerobic respirationC. Food productionIII. Energy Flow in the EcosystemA. One-way flow of energy in the biosphere (deriving food
  2. 2. from the lowest trophic level)B. Food pyramidC. Increasing food production Stage 2Product or Performance Task: EXPLANATION Evidence at the level of performance Show the difference between life Performance assessment of theUse of certain techniques or practices to energy processes. manifestation of understanding of lifeproduce innovative, market viable, energy processes as used in certaindependable and profitable materials based Criteria: techniques or practices and developingon their understanding life energy processes a. clarity (explanation is clear and beneficial products following these direct) criteria: b. Procedural ( the details of • Innovativeness explanation is step by step and easy to understand) • Marketability c. Reasonable ( merited according • Dependability to accepted standards) • Profitability INTERPRETATION • use of certain techniques llustrate how life energy processes and practices occur. • manifestations of life energy Criteria: processes a. Meaningful (drawing inference or making justification on the illustration presented) b. Illustrative (discussing accurately and comprehensively the details of
  3. 3. information)APPLICATIONPropose ways on howunderstanding of life energyprocesses can be used in life.Criteria:a. Appropriate (proposing ways orapproaches in regard to how theunderstanding of life energyprocesses can be used/adapted/customized in relation to one’s life)b. Practical (suggesting how theseways or approaches can be doneeasily)c. Efficient (expounding how theproposed ways or approaches willemploy the productive use of timeand resources)d. Effective (achieving the desiredresult in using the understanding oflife energy processes)PERSPECTIVEInfer on traditional and modernfarming practices in increasing food
  4. 4. production through life energyprocesses.Criteria:a. Insightful ( providing informationabout the pros and cons of bothtraditional and modern farmingpractices)b. Credible ( give realistic point of view about farming practices)c. Reflective of critical thinking(distinguishing between irrelevantand relevant or inaccurate andaccurate information about farmingpractices)EMPATHY Role playing a farmer’s feelingwhen there is less production dueto some conditions (such as El Ninoand La Nina phenomena, pests,and other interventions) affectinglife energy processes.Criteria:a. Perceptive (recognizing theproblem a farmer faces)
  5. 5. b. Receptive (accepting readily/willingly a farmer’s feeling about theless yield of products due to someconditions such as El Nino and LaNina phenomena, pests, and otherinterventions)c. Sensitive (demonstrating how afarmer reacts to this situation)SELF-KNOWLEDGERealizing how understanding of lifeenergy processes affects one’sview in certain techniques orpractices in developing beneficialproducts.Criteriaa. Reflective (becoming aware howone’s view on certain techniques orpractices is affected by theunderstanding of life energyprocesses)b. Responsive (reacting positivelyas a result of redirecting/ changingone’s thought or view)
  6. 6. Stage 3Teaching/Learning Sequence:EXPLORE As part of initial activities, learners shall be given an overview of life energy processes, what they are expected to learn and how their learning shall be assessed. In this stage, diagnosis of their understanding life energy processes gained from elementary science shall form part of the prerequisites. This also involves understanding or making meanings out of the scientific knowledge obtained.Learners shall: 1. undergo an assessment of their understanding of certain topics in elementary science such as different parts of the plants, functions of each part, photosynthesis, and one-way flow of energy (Suggestion: Assessment to use includes any of the following: paper and pencil test, use of checklist, use of graphic organizer, pictures, etc. Teachers shall take note of learners’ prior knowledge and misconceptions, if any); 2. be introduced to the topic life energy processes (Suggestion: Show video clips related to life energy processes. This could serve as a point of discussion among the learners. This could also help the teacher in evaluating the prior knowledge of the learners.) 3. be oriented on related and varied resources and materials to be used in understanding life energy processes (see resources and equipment/materials needed) 4. be given time to formulate questions on life energy processes and cluster these to initially find out what is/are interesting for them 5. be given time to formulate other questions leading to the Essential Question with focus on how understanding of life energy processes be used in improving certain techniques or practices and developing beneficial products
  7. 7. (Suggested Strategies: KWL, Focus Group Discussion, brainstorming, think-pair & square, dyads, round robin, etc.)6. generate as many tentative ideas (TI) to the Essential Question (EQ) as possible to show what they already know about how life energy processes can be used in improving certain techniques or practices and developing beneficial products (Suggested Strategies: strategies to use include either brainstorming, Focus Group Discussion, graphic organizer, concept mapping, etc. At this point, the teacher shall be careful not to reject learners’ opinion but shall encourage them to give their ideas without being judged as right or wrong. Each tentative idea (TI) shall be written on the board);7. be grouped accordingly to choose some of the identified prior knowledge, alternative conceptions and tentative ideas (TI). (Suggestion: Whatever each group of learners selected, the group shall be asked to challenge or explore the validity of these prior knowledge, alternative conceptions or tentative ideas during the Firm Up Stage.)8. be informed that they need to show their understanding of life energy processes in improving certain techniques or practices and developing beneficial products9. be informed that this product shall be assessed based on the following criteria: (a) innovativeness, (b) marketability, (c) dependability, (d) profitability, (d) use of certain techniques and practices, and (e) manifestations of life energy processes (Suggested Activities: Brainstorming may be used to discuss how these criteria shall be used. For fast learners, they shall be asked to develop their own criteria and rubrics and later compare these to the criteria found in this Teaching Guide. Let them choose the most appropriate criteria by revising what they did or marrying both sets of criteria so long as these will lead to an objective assessment of the product or performance. For average learners, give them the criteria and develop the corresponding scoring rubric. Assist them to revise these rubrics until an objective assessment can be made. For slow learners, give them the criteria and the rubrics. Ask them if they understand and agree with these.)
  8. 8. FIRM UP Varied learning experiences shall be introduced to help learners disprove alternative conceptions, examine/assess prior knowledge, and begin to discover the validity of tentative ideas (TI) related to the EQ; make their understanding of life energy processes real; equip them with skills and knowledge throughout the topic; and undergo differentiated instruction to address their unique strengths and needs. This involves acquiring scientific knowledge which is about accessing information, i.e., what information is needed, where information can be located and how information can be gathered focusing life energy processes.I. From Light Energy to Chemical Energy of Food A. Introduction: Plant Parts and Functions Using the chosen prior knowledge, alternative conceptions and/or tentative ideas (TI) to the EQ as starting/focal points of investigation, learners shall: 1. classify the parts of a plant with complete parts according to their functions such as absorption of water and nutrients, food production etc.) (Main Ideas: Differentiation of the plant body into an underground root system and an aerial shoot system is an adaptation to terrestrial life. The structure of roots is adapted to anchor the plant, absorb and conduct water and minerals, and store food. The shoot system consists of the stems, leaves and flowers. The functions of the shoot system include photosynthesis, reproduction, storage and transport. (Suggested Strategies: cooperative learning, KWL, graphic organizers, oral sharing, meaning making, etc.) (Suggested Activity: The learners may do the following activity and ask them to make inferences on interrelationship of the plant organs based on activities performed.)
  9. 9. Directions: Classify the main parts of the plant according to the following functions. a. leaves b. roots c. stem d. flower e. fruits f. trunk Absorption of water Transport of water and Release of oxygen Food production Food storage and nutrients nutrients 2. discuss concepts on specialized leaves, stems and roots; (Main Idea: Modified structures with diverse functions have evolved in many plants for adaptation.) (Suggested Strategies: discovery method, cooperative learning, etc.) (Suggested Activity: Learners may observe specialized plant parts available in the school garden.) 3. revisit prior knowledge, alternative conceptions and/or TI on plant organ systems, if any. (Suggested Activity: The teacher may ask each group of learners to discuss the prior knowledge, alternative conceptions and/or TI which the group previously chose for investigation. This group shall be asked to reason out for assessing, confirming or rejecting these respectively in the light of the activities conducted and analyses made pertaining to plant organ systems.)B.1. Light-dependent ReactionsUsing the chosen prior knowledge, alternative conceptions and/or tentative ideas (TI) to the EQ as starting/focal points ofinvestigation, learners shall: 4. describe how requirements of the light reactions are obtained by plants
  10. 10. (Main Idea: The light-dependent reactions, or light reactions, constitute the first stage of photosynthesis, the process by which plants capture and store energy from sunlight. In this process, light energy is converted into chemical energy, in the form of the energy-carrying molecules ATP and NADPH.) (Suggested Strategies: experimentation, modeling/teacher demonstration, concept mapping, etc.) (Suggested Activities: Learners could relate the plant organs responsible for the acquisition of the requirements for light reactions. The teacher may also let the learners perform LE Activity 1: Light and Chlorophyll Development and LE Activity 2, Light and Photosynthesis. The teacher may present processes involved in light- dependent reactions.) 5. revisit prior knowledge, alternative conceptions and/or TI on light reactions, if any. (Suggested Activity: The teacher may ask each group of learners to discuss that prior knowledge, alternative conceptions and/or TI which the group previously chose for investigation. This group shall be asked to reason out for assessing, confirming or rejecting these respectively in the light of the activities conducted and analyses made pertaining to light-dependent reactions)B.2.. Light-independent ReactionsUsing the chosen prior knowledge, alternative conceptions and/or tentative ideas (TI) to the EQ as starting/focal points ofinvestigation, learners shall: 6. describe how requirements of the light-independent reactions are obtained by plants; (Main Idea: The light-independent reactions of photosynthesis are chemical reactions that convert carbon dioxide and other compounds into glucose.) (Suggested Strategies: concept mapping, modeling/teacher demonstration, etc.) (Suggested Activity: Learners could relate the plant organs used for the acquisition of the requirements for dark reactions. The teacher may also present the processes involved in light –independent reactions. Note: Simulations of these processes can be acquired from various resources such as video materials and internet.)
  11. 11. 7. compare the light and dark reactions (Main Ideas: The light reactions produce oxygen gas and convert ADP and NADH+ into ATP and NADPH. The light reactions take place within the thylakoid membranes. The dark reaction or Calvin cycle uses ATP and NADPH from the light reactions to produce high-energy sugars. The Calvin cycle takes place in the stroma, the region outside the thylakoid membranes.) (Suggested Strategies: concept mapping, retelling, use of venn diagram, etc.) (Suggested Activity: The teacher may show an instructional video of the light and dark reactions.)8. summarize the factors that affect photosynthesis (Main Ideas: Plants use photosynthesis to harness the energy in sunlight to make sugars from carbon dioxide and water. The rate of photosynthesis is affected by light wavelength and intensity, temperature, humidity, carbon dioxide concentration and water.) (Suggested Strategies: role playing, collage making, use of graphic organizers, etc.) (Suggested Activity: Learners in group may present differentiated activities that would summarize the factors affecting photosynthesis. Activities may include role playing, collage making, etc.)9. predict the possible effects of the oversupply and/or undersupply of the factors affecting photosynthesis (Main Idea: Oversupply and/or undersupply of the three main factors affecting photosynthesis such as light irradiance and wavelength, carbon dioxide concentration and temperature may interfere with the process.) (Suggested Strategies: use of graphic organizers, debate, etc.) (Suggested Activity: Learners may work as a group and express their idea using a graphic organizer. Learners may have a debate in the class regarding environmental issues, natural calamities and/or any issue that may affect photosynthesis.)
  12. 12. 10. revisit prior knowledge, alternative conceptions and/or TI on light reactions, if any. (Suggested Activity: The teacher may ask each group of learners to discuss that prior knowledge, alternative conceptions and/or TI which the group previously chose for investigation. This group shall be asked to reason out for assessing, confirming or rejecting these respectively in the light of the activities conducted and analyses made pertaining to light-independent reactions.)C. Glucose and the Production of Other Food MoleculesUsing the chosen prior knowledge, alternative conceptions and/or tentative ideas (TI) to the EQ as starting/focal points ofinvestigation, learners shall: 11. identify the presence of glucose in plants; (Main Idea: The primary product of photosynthesis is glucose which serves as the foundation of other food molecules.) (Suggested Strategies: experimentation, cooperative learning, etc.) (Suggested Activity: Learners may perform iodine test for the presence of starch. See LE Activity 3, The Iodine Test.) 12. describe ways on how food molecules from glucose benefit life (Main Idea: The plants depend on glucose for their growth and energy. All living organisms on earth depend on fats, proteins and carbohydrates to derive their basic source of energy and thus have a direct dependence on the process of photosynthesis for their survival.) (Suggested Strategies: oral report, interview, library research, etc.) (Suggested Activity: Learners may work as a group to plan out a school-based interview on the practical use of
  13. 13. glucose. They may write questions that they could use as they interview the teachers, students, school officials, etc. They may also be asked to do LE Activity 4, Glucose as Building Blocks of Other Molecules.) 13. revisit prior knowledge, alternative conceptions and/ or TI on glucose and the production of other food molecules, if any. (Suggested Strategy: The teacher may ask each group of learners to discuss that prior knowledge, misconceptions and/or TI which the group previously chose for investigation. This group shall be asked to reason out for assessing, confirming or rejecting these in the light of the activities conducted and analyses made pertaining to glucose and other food molecules.)D. Plant ReproductionUsing the chosen prior knowledge, alternative conceptions and/or tentative ideas (TI) to the EQ as starting/focal points ofinvestigation, learners shall: 14. identify each part of a flower and relate each part to its role in sexual reproduction (Main Idea: Flowers are structurally designed for reproduction.) (Suggested Strategies: K-W-L, role playing, etc.) (Suggested Activity: To demonstrate the role in reproduction of each part of a flower, each learner may wear a name tag indicating the plant part. A narrator will tell how each part aids in plant reproduction. Let the learners discuss among themselves how they could be able to present it in a creative and meaningful manner.) 15. discuss the stages involved in the sexual reproduction of flowering plants which include gamete formation, pollination, pollen germination, double fertilization, fruit development and seed germination (Main Ideas: Reproduction in angiosperms takes place within the flower. The anther produces male gametophytes, the sperm is produced in pollen grains, which attach to the stigma on top of a carpel, in which the female gametophytes (inside ovules) are located. After the pollen tube grows through the carpels style, the sex cell nuclei from the pollen grain migrate into the ovule to fertilize the egg cell and endosperm nuclei within the female
  14. 14. gametophyte in a process termed double fertilization. The resulting zygote develops into an embryo, while the triploid endosperm and female tissues of the ovule give rise to the surrounding tissues in the developing seed. The seeds develop inside protective structures called fruits. The seed will eventually germinate and grow into a new individual. ) (Suggested Strategies: experimentation, oral report, cooperative learning, use video presentations, use of ICT materials, etc.) (Suggested Activity: Learners may do LE Activity 5: Flowers and Pollination) 16. revisit prior knowledge, alternative conceptions and/ or TI on plant reproduction, if any (Suggested Strategy: The teacher may ask each group of learners to discuss that prior knowledge, misconceptions and/or TI which the group previously chose for investigation. This group shall be asked to reason out for assessing, confirming or rejecting these in the light of the activities conducted and analyses made pertaining to plant reproduction.)5. Plant Propagation/ Techniques or Practices for ProductionUsing the chosen prior knowledge, alternative conceptions and/or tentative ideas (TI) to the EQ as starting/focal points ofinvestigation, learners shall: 17. describe some characteristics of organisms that make them efficient food producers (Main Idea: Plants have characteristics that enable them to survive in a favorable condition.) (Suggested Strategy: graphic organizer, picture analysis, field trips, etc.) (Suggested Activity: The teacher may show samples or pictures of common plant producers (such as rice, corn, etc.) and let the learners observe and/ or analyze the characteristics that make them effective food producers. Learners’ response may be presented using a graphic organizer.)
  15. 15. 18. interview a farmer/plant breeder and write down his or her best practices (Main Idea: Farmers use varied farming practices to have a better yield.) (Suggested Strategies: interview method, demonstration, role playing, oral report, etc.) (Suggested Activity: Learners may work as a group to come up with the list of questions that they may use when they interview a farmer.) 19. describe ways of growing and propagating desirable plant species (Main Idea: Desirable plant species can be propagated in many ways) (Suggested Strategies: experiential learning, discovery method, etc.) (Suggested Activities: Learners can be taught how to do activities involving life energy processes such as basic gardening techniques, hydroponics, bonsai making, etc. Learners may also do LE Activity 6: How to Make an Instant Bonsai Tree and LE Activity 7: How to Grow Hydroponic Fruits & Vegetables.) 20. revisit prior knowledge, alternative conceptions and/ or TI on plant propagation, if any. (Suggested Strategy: The teacher may ask each group of learners to discuss that prior knowledge, alternative conceptions and/or TI which the group previously chose for investigation. This group shall be asked to reason out for assessing, confirming or rejecting these in the light of the activities conducted and analyses made pertaining to techniques and practices for effective plant propagation.)II. From Chemical Energy of Food to Chemical Energy of ATPA. Aerobic and Anaerobic RespirationUsing the chosen prior knowledge, alternative conceptions and/or tentative ideas (TI) related to the EQ as starting/focalpoints of investigation, learners shall:
  16. 16. 21. identify the raw materials and end products of respiration (Main Idea: Cellular respiration requires a food molecule such as glucose and oxygen, and gives off carbon dioxide, water and energy.) (Suggested Strategies: KWL, use of diagram or graphic organizers, etc.) (Suggested Activity: The teacher may show an instructional video on respiration.)22. explain how stored energy in glucose is released in respiration (Main Ideas: Cellular respiration is the process that releases energy by breaking down food molecules in the presence of oxygen. It has three main stages: glycolysis, Krebs cycle/citric acid cycle and electron transport. Each of the three stages captures some of the chemical energy available in food molecules and uses it to produce ATP. (Suggested Strategies: KWL, experimentation, think pair share, etc.) (Suggested Activity: To test the speed of respiration, learners may perform LE Activity 8: The Rate of Respiration.)23. compare aerobic and anaerobic respiration in terms of ATP production and end products (Main Ideas: The process of anaerobic respiration yields relatively less energy as compared to the aerobic respiration. The process of anaerobic respiration for production of energy can occur in either of the following: a.) alcoholic fermentation wherein glucose is broken down to ATP, ethanol and carbon dioxide, b.) lactic acid fermentation wherein glucose is broken down to ATP and lactic acid.) (Suggested Strategies: use of graphic organizers, demonstration method, use of video materials and multimedia, etc.) (Suggested Activity: Learners may do LE Activity 9: Aerobic and Anaerobic Respiration.)
  17. 17. 24. cite situations that show how respiration occurs in organisms (Main Ideas: Aerobic respiration takes place in almost all living things. Some organisms can respire in the absence of air: There are a number of fermentation pathways that different cells use. Yeast cells produce ethyl alcohol by fermentation. Certain cells of our body, namely, muscle cells, use lactic acid fermentation. Depending on the organism, some of the other products of fermentation include acetic acid, formic acid, acetone and isopropyl alcohol.) (Suggested Strategies: experimentation, think pair share, etc.) (Suggested Activity: The learners may put up a mini exhibit of the products of respiration such as cheese, buttermilk, yogurt, bread, etc. Prior to the activity, they may conduct a research on the processes involved in making such products.) 25. revisit prior knowledge, misconceptions and/ or TI on aerobic and anaerobic respiration, if any (Suggested Strategy: The teacher may ask each group of learners to discuss that prior knowledge, alternative conceptions and/or TI which the group previously chose for investigation. This group shall be asked to reason out for assessing, confirming or rejecting these in the light of the activities conducted and analyses made pertaining to aerobic and anaerobic respiration.)B. Food Production (with emphasis on local industries)Using the chosen prior knowledge, alternative conceptions and/or tentative ideas (TI) to the EQ as starting/focal points ofinvestigation, learners shall: 26. conduct activities on different ways preserving food (Main Idea: Foods can be preserved in many ways.) (Suggested Strategies: experiential learning, differentiated instruction, round robin discussion, research, oral report, etc.)
  18. 18. (Suggested Activity: The following resources can be used to get samples of activities: internet, library, interview with the public market vendors, factories, etc. The teacher may also consider LE Activity 10: The Methods of Fish Preservation. ) 27. use certain techniques or practices to produce innovative, market viable, dependable and profitable materials based on their understanding about life energy processes particularly on respiration and fermentation (Main Idea: Life energy processes are evident in several food production techniques.) (Suggested Strategies: experiential approach, differentiated instructions, interviews, research, oral report, etc.) (Suggestion: Learners could make fermented products such as buro of any kind, vinegar, dry sausages, kimchi and yogurt. Procedures and recipes are available in recipe books and internet sites such as http://filipinorecipes.org, http://www.magluto.com, and http://www.pinoyrecipe.net) 28. revisit prior knowledge, alternative conceptions and/ or TI on food production, if any. (Suggested Activity: The teacher may ask each group of learners to discuss that prior knowledge, alternative conceptions and/or TI which the group previously chose for investigation. This group shall be asked to reason out for assessing, confirming or rejecting these in the light of the activities conducted and analyses made pertaining to food production.)III. Energy Flow in the EcosystemA. One-way Energy Flow in the BiosphereUsing the chosen prior knowledge, alternative conceptions and/or tentative ideas (TI) to the EQ as starting/focal points ofinvestigation, learners shall: 29. trace the energy flow in a food chain and food web (Main Idea: Energy flow in the ecosystem is a one-way process. Energy flows from the sun, to the producers, and
  19. 19. to the consumers. The flow of energy between organisms can be shown by a food chain or a food web.) (Suggested Strategies: role play, picture analysis, pantomime, etc.) (Suggested Activity: The teacher may let the learners perform varied activities that would enable them to trace the flow of energy in the food chain. They may analyze charts, solve problems, do puzzle activity, have a role play, etc.)B. Food PyramidUsing the chosen prior knowledge, alternative conceptions and/or tentative ideas (TI) to the EQ as starting/focal points ofinvestigation, learners shall: 30. analyze the relationship between producers and consumers through the energy pyramid; (Main Idea: A large amount of producers at the base of the pyramid will be needed to support only a few of the consumers at the top.) (Suggested Strategies: problem solving activity, debate, panel discussion, oral report, research, etc.) (Suggested Activity: To better understand the relationship between producers and consumers in the energy pyramid, the learners may do LE Activity 11: Producers vs. Consumers ) 31. discuss the advantage of deriving our food source (fruits and vegetables) from the lowest trophic level. (Main Idea: The greatest amount of energy is at the base of the pyramid. The amount of energy decreases towards the top.) (Suggested Strategies: multimedia presentation, panel discussion, school-based campaign on eating veggies, hands on activities, etc.) (Suggested Activity: The teacher may let the students have a debate on certain issues such as vegetarianism, real and artificial juices, etc.)
  20. 20. 32. revisit prior knowledge, alternative conceptions and/ or TI on food pyramid, if any. (Suggested Activity: The teacher may ask each group of learners to discuss that prior knowledge, misconceptions and/or TI which the group previously chose for investigation. This group shall be asked to reason out for assessing, confirming or rejecting these in the light of the activities conducted and analyses made pertaining to food pyramid)C. Increasing Food ProductionUsing the chosen prior knowledge, alternative conceptions and/or tentative ideas (TI) to the EQ as starting/focal points ofinvestigation, learners shall: 33. discuss the possible effects of the disruption of food chain or food web on food production (Main Idea: People are the top consumers in many food webs. To increase food production, they use methods which may disrupt food chains and food webs. They have to learn how to correct these mistakes.) (Suggested Strategies: symposium, role play, research, etc.) (Suggested Activity: Invite resource persons to talk about monoculture (advantages/disadvantages), proper use of insecticides and fertilizers, and other farming practices. Latest issues about the topic could be pointed out in the dialogue among the learners.) 34. revisit prior knowledge, alternative conceptions and/ or TI on increasing food production, if any. (Suggested Activity: The teacher may ask each group of learners to discuss that prior knowledge, alternative conceptions and/or TI which the group previously chose for investigation. This group shall be asked to reason out for assessing, confirming or rejecting these in the light of the activities conducted and analyses made pertaining to the increasing of food production.)
  21. 21. DEEPEN Here, learners shall be engaged in understanding scientific knowledge which includes the processing and making meanings out of the information. Learners need to reflect, revisit, revise and rethink their ideas; express their understandings and engage in meaningful self-evaluation; and undergo in-depth study of life energy processes using multiple sources of information and various modalities of manifesting learning.Learners shall: 1. conduct research about the new trends and discoveries involving photosynthesis and respiration (Suggested Activity: may be done through a library research or internet search / if technology is not available, the students may conduct a community-based research or survey / common practices in the community that involve plant organs may be the basis of students’ research); 2. identify which farming practices or techniques are beneficial 3. role play the feelings of a farmer when there is less production due to certain factors – long-term use of pesticides, etc. (FU: Empathy) 4. show the differences between life energy processes.( FU: Explanation) 5. ilustrate how cycle of materials and flow of energy occur through the life energy processes.(FU: Interpretation) 6. propose ways on how understanding of life energy processes be used in life.(FU: Application) 7. argue on traditional and modern farming practices in raising up food production through life energy processes. (FU: Perspective) 8. realize how understanding of life energy processes affects one’s view in certain techniques or practices in developing beneficial products.(FU: Self-knowledge)
  22. 22. To draw out the essential understanding, learners shall: 9. contemplate on the essential question “How does understanding of life energy processes become beneficial?”;(TN: Teachers may ask sub-questions if the students fail to answer the EQ. Remind learners of the EQ which they formulated at the beginning of the topics.) 10. reexamine their revised TI 11. justify their previous answers based on the understanding(s) gainedTRANSFERThere is a need to encourage learners to organize their learning experiences so that they can move from teacher-guided andconcrete activities to independent applications where they create or produce new knowledge in science. This is to challengelearners to transfer their learning in new settings and use this creatively to generate new ideas, view things differently andreengineer processes. Learners shall be involved in designing, constructing, planning, producing new knowledge and/orinventing products which can contribute to the protection of the environment and sustainable use of resources.Learners shall: 1. apply and add value to certain techniques or practices to produce innovative, market viable, dependable and profitable materials based on their understanding about life energy processes.(for example: herb propagation using recyclable materials, hydroponics, vinegar making, food preservation, meat processing, etc) 2. document the creation of products using the details of the criteria below: • innovativeness • marketability • dependability • profitability
  23. 23. • use of certain techniques and practices • manifestations of life energy processes 3. conduct of classroom bazaar (where learners shall present and sell their products; teacher/s; and parents and community members to assess the product/sWeblinks: http://www.biotopics.co.uk/humans/respro.html http://www.bukisa.com http://www.cals.ncsu.edu/agexed/sae/toolbox/worksheets.html http://www.ehow.com http://www.enchantedlearning.com http://www.gardenguides.com http://www.schools.utah.gov http://www.solarenergyireland.comReferences: Essenfield, Gontang, and Moore. Biology 2nd Edition. Addison-Wesley Publishing Company, Inc., 1996. pp. 85-103 Krogh, David. Biology: A Guide to the Natural World 3rd Edition. Pearson Education, Inc. 2005. Pp. 153-163 Lesson Plans in Science II, BSE DepEd 2003, p.7Materials • Scissors • Black construction paper • Potted plant • Tape • Blue, red, green cellophane • 5 large test tubes • Glass-marking pencil • Forceps • 400-mL beaker
  24. 24. • 5 petri dishes• Iodine solution• Paper towels• 15-to-20 gallon plastic bin with lid• 1/2-inch and 3/4-inch drill bits• Tape measure• 1/2-inch drain fitting with screen• 3/4-inch drain fitting with screen and riser extension• Submersible aquarium pump, about medium size• 2 feet of 1/2-inch flexible tubing• 2 feet of 3/4-inch flexible tubing• Concentrated nutrient solution• Plant transplants• Hydroponic pebbles or growing medium• Water• Grow lights, if necessary• 2 clear glass jars• tap water• 2 sprigs of hydrilla• lamp or natural light• Test tubes• Test tube rack• Glass rod• Spatula• Mechanical grinder or pestle and mortar• Dropping pipette• White tile• Eye protection glass• Power drill

×