
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Prognostic of future health state relies on the estimation of the Remaining Useful Life (RUL) of physical
systems or components based on their current health state. RUL can be estimated by using three main
approaches: modelbased, experiencebased and datadriven approaches. This paper deals with a datadriven
prognostics method which is based on the transformation of the data provided by the sensors into
models that are able to characterize the behavior of the degradation of bearings.
For this purpose, we used Support Vector Machine (SVM) as modeling tool. The experiments on the
recently published data base taken from the platform PRONOSTIA clearly show the superiority of the
proposed approach compared to well established method in literature like Mixture of Gaussian Hidden
Markov Models (MoGHMMs).
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment