
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
The conventional clustering algorithms mine static databases and generate a set of patterns in the form of
clusters. Many real life databases keep growing incrementally. For such dynamic databases, the patterns
extracted from the original database become obsolete. Thus the conventional clustering algorithms are not
suitable for incremental databases due to lack of capability to modify the clustering results in accordance
with recent updates. In this paper, the author proposes a new incremental clustering algorithm called
CFICA(Cluster FeatureBased Incremental Clustering Approach for numerical data) to handle numerical
data and suggests a new proximity metric called Inverse Proximity Estimate (IPE) which considers the
proximity of a data point to a cluster representative as well as its proximity to a farthest point in its vicinity.
CFICA makes use of the proposed proximity metric to determine the membership of a data point into a
cluster.
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment