Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Enterprise Analytics 2016 - IIH Nordic Int.

185 views

Published on

Challenges of Enterprise Analytics by Peter Meyer at WAW and SUPERWeek 2016.

Published in: Data & Analytics
  • Be the first to comment

  • Be the first to like this

Enterprise Analytics 2016 - IIH Nordic Int.

  1. 1. Enterprise Analytics Making it big…
  2. 2. • 10+ years of analytics – Including log file analyzing ;-) • 19 years of web development – 7 years of Sitecore coding – C#, SQL, HTML, CSS and the likes • Certified in Google Analytics, Adobe Analytics, Ensighten TMS, Tealium TMS, Sitecore + some • Have worked at Aller Media and GN ReSound between 2006 and 2014, and then at IIH Nordic from 2014 Call me Peter
  3. 3. 1. Technical setup 2. The ”Human factor” 3. User access 4. Multiple or different sites 5. Data quality Challenges of Enterprise Analytics
  4. 4. 1. Technical setup 2. The ”Human factor” 3. User access 4. Multiple or different sites 5. Data quality Challenges of Enterprise Analytics
  5. 5. Technical setup
  6. 6. Data sent to analytics can be of mixed quality Technical setup
  7. 7. The pain http://www.brand.co.uk/homepage/fashion http://www.brand.dk/home/fashion http://www.brand.co.uk/home/fashion/footwear http://www.brand.dk/home/fashion/shoes-boots http://www.brand.co.uk/?query=shoes http://www.brand.dk/?keyword=shoes Technical setup
  8. 8. The pain http://www.brand.co.uk/homepage/fashion http://www.brand.dk/home/fashion http://www.brand.co.uk/home/fashion/footwear http://www.brand.dk/home/fashion/shoes-boots http://www.brand.co.uk/?query=shoes http://www.brand.dk/?keyword=shoes Technical setup
  9. 9. The pain http://www.brand.co.uk/homepage/fashion http://www.brand.dk/home/fashion http://www.brand.co.uk/home/fashion/footwear http://www.brand.dk/home/fashion/shoes-boots http://www.brand.co.uk/?query=shoes http://www.brand.dk/?keyword=shoes Technical setup
  10. 10. The pain http://www.brand.co.uk/homepage/fashion http://www.brand.dk/home/fashion http://www.brand.co.uk/home/fashion/footwear http://www.brand.dk/home/fashion/shoes-boots http://www.brand.co.uk/?query=shoes http://www.brand.dk/?keyword=shoes Technical setup
  11. 11. The pain http://www.brand.co.uk/homepage/fashion http://www.brand.dk/home/fashion http://www.brand.co.uk/home/fashion/footwear http://www.brand.dk/home/fashion/shoes-boots http://www.brand.co.uk/?query=shoes http://www.brand.dk/?keyword=shoes Technical setup
  12. 12. Remedy #1 – Before analytics • Send data as consistent as possible • Separate test and staging data from that of the production environment TMS is a great help here Technical setup
  13. 13. Remedy #2 – In analytics • Refine and clean incoming data Lowercase, include, exclude, and in some cases rewrites • Define correct settings Paths, search, qs params, goals ... Technical setup
  14. 14. The ”Human factor”
  15. 15. Humans think differently (and act accordingly) The ”Human factor”
  16. 16. The pain ?utm_source=Newsletter&utm_medium=e-mail&utm_campaign=octo10 ?utm_source=newsletter&utm_medium=E-mail&utm_campaign=October10 ?utm_source=newsleter&utm_medium=mail&utm_campaign=OCT10 ?utm_source=nyhedsbrev&utm_medium=Email&utm_campaign=oktober10 Different values = different campaigns The ”Human factor”
  17. 17. The pain ?utm_source=Newsletter&utm_medium=e-mail&utm_campaign=octo10 ?utm_source=newsletter&utm_medium=E-mail&utm_campaign=October10 ?utm_source=newsleter&utm_medium=mail&utm_campaign=OCT10 ?utm_source=nyhedsbrev&utm_medium=Email&utm_campaign=oktober10 Different values = different campaigns The ”Human factor”
  18. 18. The pain ?utm_source=Newsletter&utm_medium=e-mail&utm_campaign=octo10 ?utm_source=newsletter&utm_medium=E-mail&utm_campaign=October10 ?utm_source=newsleter&utm_medium=mail&utm_campaign=OCT10 ?utm_source=nyhedsbrev&utm_medium=Email&utm_campaign=oktober10 Different values = different campaigns The ”Human factor”
  19. 19. The pain ?utm_source=Newsletter&utm_medium=e-mail&utm_campaign=octo10 ?utm_source=newsletter&utm_medium=E-mail&utm_campaign=October10 ?utm_source=newsleter&utm_medium=mail&utm_campaign=OCT10 ?utm_source=nyhedsbrev&utm_medium=Email&utm_campaign=oktober10 Different values = different campaigns The ”Human factor”
  20. 20. Remedy #1 – Tools More hands off the keyboard The ”Human factor”
  21. 21. Remedy #2 – utm_id /page1?utm_id=abc987 Minimizes the ‘human error factor’ The ”Human factor” ga:campaignCode ga:source ga:medium 123abc Winter Newsletter email abc987 Summer Newsletter email
  22. 22. Multiple or different sites
  23. 23. Demands to analytics implementations differ from website to website Multiple or different sites
  24. 24. The pain Cookies are not allowed before a policy has been seen by the users Multiple or different sites
  25. 25. A remedy • Use a TMS to connect cookie-less tracking with normal cookie tracking Multiple or different sites +
  26. 26. Multiple or different sites
  27. 27. The pain For some countries you need to anonymize users Multiple or different sites
  28. 28. A Remedy • Use a TMS to anonymize users Multiple or different sites
  29. 29. 1. Technical setup 2. ”Human factor” 3. User access 4. Multiple or different sites 5. Data quality Challenges of Enterprise Analytics

×