Fanhua ma

2,994 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,994
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Fanhua ma

  1. 1. Research and Development of HCNG (Hydrogen enriched Natural Gas) Internal Combustion Engines Prof. Dr. Fanhua Ma mafh@tsinghua.edu.cn TEL/FAX: 86-10-62785946 State Key Laboratory of Automotive Safety & Energy Tsinghua University
  2. 2. 中国石油年需求与缺口数量 The Oil Demand and Gap in China 道路交通需求量 500.0 Oil Demand in Transportation 中国石油总需求量 400.0 Total Oil Demand 300.0 石油需求与 供给的缺口百万吨 The gap 200.0 中国石油年产量 Oil Production 100.0 0.0 2000 2010 2020 2030 2050
  3. 3. Natural Gas Vehicles (NGVs) in China In last decade natural gas production increased relatively rapidly. Strongly Supported by China government NGVs population increased very rapidly from less than ten thousands in 1999 to 0.5 millions in 2009, and the natural gas stations increased very rapidly from less than 50 in 1999 to about 1000 in 2009.中国天然气汽车从1999年不到1万辆增加到2009年50万辆,天然气加气站从1999年不到50座增加到2009年1300多座。 3
  4. 4. 发展CNG、HCNG汽车的背景和意义 Background and Significance of Developing HCNG and CNG Vehicles环保节能及实现我国汽车工业发展的挑战Environment protection, energy saving and the challenges ofdevelopment of China auto industry石油依赖性和国家能源安全Oil dependence and China’s energy security汽车保有量增加,污染加剧Vehicle population growing and environment pollutionaggravating未来氢能发展提供的机遇Opportunity from hydrogen energy development in the future
  5. 5. 发展HCNG汽车的背景和意义Background and Significance of Developing HCNG Vehicles 在天然气发动机燃料中加入适量的氢气(即氢气/天然气混合气,简称“HCNG” ),可以提高混合气燃烧速度、扩大稀燃极限,从而提高发动机的热效率、可降低排放,这是目前国内外正在研究的热点问题。Taking hydrogen enriched compressed natural gas (HCNG) as a fuel in CNGengine can increase the burning speed, widen the lean burn limit. For itshigh efficiency and better emission, HCNG engine is being studiedworldwide. 近年来,国外开展了HCNG发动机的基础研究及应用研究,其中美国、加拿大、欧盟日本等国的研究最为活跃。在美国能源部(DOE)等支持下,美国Colorado州立大学、HCI公司(Hydrogen Components Inc.)、加拿大Westport等单位较早就开始了氢气/天然气发动机的研究,取得了许多研究开发及示范应用成果。In recent years, some countries carried out the basic research on HCNGengine actively, especially in the USA, Canada,EU and Japan.With the supports of Department of Energy (DOE) etc., Colorado UniversityHCI company (Hydrogen Components Inc.) ,Westport Inc. etc. started theresearch on HCNG engine early, and got lots of achievements of researchand demonstration.
  6. 6. 发展HCNG汽车背景和意义Background and Significance of DevelopingHCNG and CNG Vehicles Cummins – Westport’s HCNG Engine Cummins-Westport B Gas plus Engine 6 cylinders,inline, Turbocharged and intercooled Bore,Stroke 102mm, 120mm Compression 10.5:1 Ratio Displacement 5.9 L H2/HCNG by 20% volume Power 230 BHP (172 Kw) @ 2800 RPM Torque 677 Nm @ 1600 RPM HCNG buses demonstration in Sunline Transit, California, USA
  7. 7. 从天然气汽车到氢能汽车的发展路径 The Development Path from CNG Vehicles to Hydrogen Vehicles 解决燃料电池电动 H2 作为内燃机汽车燃料是过渡示范过程 汽车实用化问题 HCNG( H2+CNG ) 解决氢能电动汽车 特殊性问题 氢燃料电池汽车 气-电混合电 • 零排放, 解决氢能汽车 动汽车 •燃料消耗下降 一般性问题 •满足欧Ⅳ以上 25% 以 上 , 动 力 增 存在问题: HCNG混合燃 排放标准, 加 排放标准偏低 料汽车 •燃料消耗下降 •价 格 与 纯 电 动 甲烷排放 15%以上,动力 燃料经济性比柴 •满足欧Ⅲ以上 汽车相当 增加 油机低20%—40% 排放标准,动力 续行里程不够长 性提高 •串联式机电混 •串 联 混 合 动 力 合动力系统 传动 天然气汽车 •机械式动力传 动系统 •火花点燃式内 •燃 料 电 池 发 动 •满足欧Ⅱ排放 燃发电机组 机 •点燃式内燃机 •火 花 点 燃 式 内 •HCNG 混 合 燃 燃机 •HCNG 混 合 燃 •100%氢气燃料 料 •100%天然气 料 (压缩氢气) •天然气加气站 •天然气加气站 •天然气加气站 +制氢设备 •天然气加气站+ +制氢设备 重整制氢设备 已有基础 第一阶段 第二阶段 第三阶段 (2004年前) (2005年开始) (2006年开始) (2010年开始)
  8. 8. 清华大学HCNG发动机试验台 HCNG engine’s Test Bench in Tsinghua发动机与电涡流测功相连,可测量和控制转速与负荷。The engine was coupled to an eddy-currentdynamometer for engine speed & loadmeasurement and control.
  9. 9. HCNG Engine’s Experimental SystemsThree performance 、emission experiment benchesReliability test base in Nanchong DongfengCVS total flow test equipment and transient test-bedcatalyst test bench
  10. 10. 发动机缸内压力的测量系统Engine’s In-cylinder Pressure Measurement System
  11. 11. Main Technical Approach 电控技术 电控点火、喷射 后处理技术 NG控制策略 空燃比、怠速、增压、低背压、低起燃度、热抗振强 过渡工况、自学习控制 可靠性技术 NG喷射技术新型耐磨材料、活塞表面处理 专用混合器,均质混合 高能点火技术 点火电压3.5万伏 增压中冷技术 空-空,废气旁通,水冷 稀薄燃烧技术 空然比26.5
  12. 12. Dongfeng CNG Engines’ Performances 型号 EQD160N-30/40 EQD180N-30/40 EQD210N-30/40 EQD230N-30/40 六缸、直列、四冲程、水冷、涡轮增压、空空中冷、电控多点喷射集中喷射、点 型式 燃式发动机 缸径X冲程 105X120 总排量(L) 6.234 压缩比 10:1 增压器 水冷式带废气放气阀增压器 点火 高能无分电器分组点火 曲轴箱通风方式 闭式曲轴箱通风 燃烧类型 稀燃 燃料 LNG / CNG 怠速转速(r/min) 750±50 额定转速(r/min) 2800 额定功率(kW) 118 132 154 172最大扭矩(N*m)/转速( 420/1400~1600 580 /1400~1600 620 /1400~1600 700 /1400~1600 r/min)全负荷最低燃气消耗率(g/ ≤205 kW*h) 后处理器 氧化型催化转化器 排放 国Ⅲ/国Ⅳ
  13. 13. Dongfeng CNG Engines and Vehicles 已开发的主要载重车型国内首批LNG环卫车服务北京奥运场馆 KZ5 /KZ4 (LNG)环卫车 EQ1141K(LNG)环卫车 EQ5118ZYS压缩式垃圾清运车 EQ1118K53D载货车 EQ1165FJ载货车 EQ1141K7D环卫车 EQ1165K2载货车 DQD5256KPS2洒水车
  14. 14. Dongfeng CNG Engines and Vehicles已匹配主要的公交车型自主开发的天然气发动机用于重庆亚太市长峰会 重庆 北京三亚、海口 鄂尔多斯 四川达州 泰国 孟加拉
  15. 15. Dongfeng-Tsinghua Cooperated Projects: LNG Engine R&DThe base engine is DCI 11 Diesel engine withcommon rail。 Rated Power Max torque (kW/r/min) (N.m/r/min) 295/1900 1680/1100~1300 EQRN400-30LNG engine and LNG truck
  16. 16. Technical Approach of HCNG Engine电子控制HCNG进气管喷射Electronic control HCNG injection in the engine’s manifold空燃比开环控制→闭环控制Open → Close- loop control of Air-Fuel ratio电控高能点火High-energy ignition with electronic control稀薄燃烧Lean burn水冷式增压器water-cooled supercharger氧化型催化器Oxidation catalyst
  17. 17. CNG Supply and Injection System of Engine LNG气瓶 汽化器 缓冲罐
  18. 18. Injected HCNG Supply System mixer Air Turbo-charger filter Throttle valve CNG nozzle driver Solenoid module valve Second stage reducer Engine ECM CNG bottle High Pressure filter first stage reducer Solenoid Valve CNG air mixtureexhaust line pencil
  19. 19. EQD180N-30 CNGEngines Structural Parameter and Performance Type EQD180N-30 Pattern Four strokes、water-cooled、turbocharged and intercooled、single-point electronic control injection、ignition engine、 Cylinder diameter Oxidation catalyst ×stroke 105mm×120mmCompression ration 10:1 Displacement 6.234L Fuel CNG Ignition high-energy free distributor electric control Combustion Form Lean burn Rated power 132kW/2800r/min Maximum torque 540N.m/1400r/minLowest full-load fuel 205g/kW.h consumption rate Emission Europe Ⅲ、Ⅳ
  20. 20. Eelctric Control of HCNG Injection EngineHCNG单点电喷系统组织示意图 HCNG
  21. 21. HCNG Engine’s System Composition and Technical Design EQD180N-30EQD180-30HCNG Engine HCNG Engine
  22. 22. Injected HCNG Supply system - HCNG Gas Injector low resistance operation temperature range: — 40 ℃ ~120℃ normal operation voltage:12VHCNG Gas Injector
  23. 23. Injected HCNG Supply System pressure regulator test-bedLow voltage electromagnetic and low pressure regulator Output pressure:450±50kPa High-pressure regulator 输出压力控制在450±50kPa Output pressure:1±0.15MPa
  24. 24. High Energy Ignition System less ignition energy loss Front sealed、with air bleed hole high temperature resistant :180℃High-voltage wire
  25. 25. ECU Hardware System of HCNG Engine
  26. 26. Electronic Injection SystemECU and nozzle driver module ECU Function: control software calibration data Application conditions : Working temperature:-40 ~ 85℃ Working voltage:9 ~16 V Shell can’t be attached with iron, installed in the cab Nozzle driver module
  27. 27. Electronic Control Simulation System calibrate after upgrading ECM ensure electronic injection system develop successfully shorten bench calibration time
  28. 28. Control Strategy
  29. 29. Validation of the Control System
  30. 30. Oxidation Catalyst Performance test and Match with Engine Oxidation Catalyst made in ChinaOxidation Catalyst from ECOCAT 30
  31. 31. HCNG Engine R&D in Tsinghua
  32. 32. 焦 炉 气( Coke Oven Gas ) 简 介 焦炉气(Coke Oven Gas,COG),又称焦炉煤气,是炼焦工业的副产品。 一般每吨干煤可生产焦炉气300~350m3(标准状态)。其主要成分为氢气H2(55%~60%)和甲烷CH4(23%~27%),另外还含有少量的一氧化碳CO(5%~8%)、C2以上不饱和烃 CnHm(2%~4%)、二氧化碳CO 2(1.5%~3%)、氧气(0.3%~0.8%))、氮气(3%~7%)。焦炉气热值为每标准立方米17~19MJ 。 我国是世界上最大的焦炭生产、消费和出口国 2008年焦炭产量3.2亿吨,占全球总产量的近60%。 国家统计据数据显示,全国每年白白排放掉的焦炉煤气就 有600多亿立方米(相当于3000万吨汽柴油),接近6个西 气东输工程的输气量。 焦炉煤气的清洁高效利用迫在眉睫!
  33. 33. 山西2005年焦炉煤气产量为143.91亿立方米,占全国总量的29.8%。产量排在前5位的其他4省是辽宁、河北、山东和湖北,产量依次为65.3亿、43.5亿、38.1亿、31.2亿立方米,这5省焦炉煤气的总产量之和占全国的66.6%。
  34. 34. Schematic of HCNG fuel supply systemSchematic of the on-line hydrogen- natural gas mixing system used
  35. 35. Principles of HCNG on-line mixing system At first the measured NG mass flow rate is converted to an analog voltage signal which is then transferred to a computer for further processing after A/D converting. By using the stocked control software and the input value of blending ratio as well as the received signal of NG mass flow rate, the computer then calculates out the desired hydrogen mass flow rate.This calculated value is used as an immediate input into the hydrogenflow controller, which controls the flow rate according to the desiredvalue through varying the openness of the integrated valve. This resultedhydrogen flow rate need to be re-checked by a high accuracy mass flowmeter located downstream the flow controller. If significant differencebetween the measured hydrogen flow rate and previously calculated oneis found, a feedback control would become active to ensure controlaccuracy.
  36. 36. 掺氢对稀燃极限的影响Effect of Hydrogen Addition on Lean Operation Limit COVIMEP 稀燃极限定义为平均 指示压力的循环变动 达到10%时的过量空 气系数 The lean operation limit was defined as the excess air ratio at which COVIMEP reaches 10%. 掺氢比的提高可以拓宽稀燃极限,改善发动机的稀燃性能。 Hydrogen enrichment could significantly extend the lean operation limit, improve the engine’s lean burn ability.
  37. 37. 燃烧持续期 Combustion Duration在空燃比确定的情况下,随着掺氢比的提高,燃烧持续期会缩短。这表明,掺氢确实可以提高火焰传播速度。At a given lambda, combustion duration shortened as hydrogenfraction increased. This illustrated that hydrogen addition couldindeed speed up flame propagation.
  38. 38. 发动机热效率和排放特性Engine Thermal Efficiency and Emission Characteristics At fixed ignition timing NOx 图中λm_0和 λm_10% 分别表示 CNG和掺氢比为 10%的HCNG的稀燃 极限。 λm_0 and λm_10% in these figures represent lean limit for NG and 10% hydrogen fraction mixture respectively. 同一空燃比下,掺氢比越高,NOx排放量越大。这是因为氢气的 加入提高了燃烧温度,而高温是NOx形成的主要因素。 More hydrogen added would result in more NOx emission at a given lambda, this is thought to be caused by the elevated combustion temperature due to hydrogen addition since high temperature was a catalyst for the formation of NOx
  39. 39. HC由上图可看出,掺氢可降低HC的排放,这是因为氢气可以提高火焰传播速度,减小淬熄距离,从而降低了不完全燃烧的可能性。C浓度由于氢气的加入而有所降低也是HC排放下降的一个原因。Reduced HC emission by hydrogen enrichment was observed in ourstudy which could be explained by the fact that hydrogen could speed upflame propagation and reduce quenching distance, thus decreasing thepossibilities of incomplete combustion . Carbon concentration of the fueldecreased due to hydrogen addition was another reason for HC emissionreduction.
  40. 40. CO在过量空气系数小于1.7的区域,掺氢与否对于CO排放的影响不明显,但一旦过量空气系数超过1.7,掺氢越多,CO排放越低。 这归功于氢气良好的燃烧特性,特别是在稀燃料的情况下。In the region where lambda was less than 1.7, adding hydrogen or notshowed no significant difference on CO emission, but once lambdaexceeded 1.7, more hydrogen addition resulted in much less exhaustCO. This was also attributed to hydrogen’s ability to strengthencombustion, especially for lean fuel-air mixtures.
  41. 41. 指示热效率 Indicated Thermal Efficiency当过量空气系数小于1.5时,掺氢并没改善发动机的热效率,反而50%掺氢时的热效率与纯天然气发动机相比有明显的下降。when lambda was under 1.5, hydrogen addition was not beneficial toengine’s efficiency improvement. Rather, the engine’s thermalefficiency exhibited an obvious drop when fuelled by HCNGcontaining 50% hydrogen compared to pure NG operation.
  42. 42. NOx相同指示热效率下,掺氢比增加可降低NOx排放。相同NOx排放下比较,掺氢越多,热效率越高。At given ITE, NOx emission decreased as the increase ofhydrogen fraction and at given NOx emission, ITE increased asmore hydrogen is added.
  43. 43. 掺氢比增加,NOx排放与HC排放相对曲线向左下角偏移,这说明了掺氢可降低NOx排放与HC排放相互矛盾的程度。The trade-off curve moves further to the left-bottom as morehydrogen is added which meant that tradeoff between NOx andHC emission was indeed alleviated by hydrogen addition.
  44. 44. 通过HCNG燃料空燃比调整特性试验的结果对比原机燃用天然气的MAP数据,优先选择在扭矩相近的前提下NOx比排放降低的最大空燃比点作为目标空燃比,由此得出HCNG发动机的目标空燃比MAP图;在点火提前角的标定过程中,实际空燃比保持在HCNG发动机的目标空燃比,在保持动力性不变的前提下尽量推迟点火,以降低NOX排放,最终得到的点火提前角MAP图。The calibrated air-fuel ratio and spark timing map were achieved based on thegoals of the emission ( especialy NOx ), specific fuel consumption and poweroutput of the HCNG engine.
  45. 45. HCNG Engine’s Performance外特性标定的目的是使发动机最大功率,最大转矩和最低气耗率达到预定要求。 标定后的 20%HCNG 动 力性与原天然 气发动机大致 相当,但经济 性要好于天然 气发动机
  46. 46. ETC Emission Test20%HCNG and CNG Engine’s ETC Emissions Comparison( without catalyst ) 掺入20%氢气后,在不带催化器的情况下,NOx,CO,NMHC,CH4排放和BSFC相对于原天然气发动机分别下降51%,36%,60%,47%和7% 在不带催化器的情况下通过掺入氢气有潜力使发动机达到国(欧)三排放标准。
  47. 47. ETC Emission TestFueled with 20% H2 HCNG for different catalyst: 采用ECOCAT Ⅰ型,ECOCAT Ⅱ型和昆贵所催化器,不带加速加 浓,进行20%掺氢比ETC循环试验。 三种催化器都能使发动机排 放达到环境友好型汽车(EEV) 标准。 三种氧化型催化转化器转化 效率大小排序为: ECOCATⅡ型>国产催化器 >ECOCAT Ⅰ型。 随着催化效率的提高,发动 机动力性下降逐渐增大
  48. 48. HCNG (20% H2) Engine ETC Emission Data 欧Ⅳ限值 欧Ⅴ限值 EEV限值 实测值 Euro Euro Ⅴ EEV Measured data data data data NOx 3.5 2.0 2.0 1.18-1.60(g/kW.h) CO 4.0 4.0 3.0 0.26-0.80(g/kW.h) NMHC 0.55 0.55 0.40 0.09-0.20(g/kW.h) CH4 1.1 1.1 0.65 0.40-0.50(g/kW.h)
  49. 49. 中美双方在美国签署合作备忘录Tuesday, November 30, 2004Argonne National Laboratory 3rd Joint Working Group Meeting Breakout Group 2: Hydrogen Demonstration, Fuel Cells, and Transportation
  50. 50. 氢气-天然气混合燃料(HCNG)客车
  51. 51. HCNG混合动力城市客车 Hybrid HCNG City Bus 串联型混合动力系统方案 Wheel APU Motor Electric Electric Generator CNG Fuel Differential CNG ICE Rectifier Battery
  52. 52. Hybrid system -APU
  53. 53. HCNG Bus Max. Speed and Acceleration Time
  54. 54. HCNG Bus Fuel Consumption 3 buses ,20,000Km Demo.
  55. 55. HCNG bus performance compared with CNG Bus Power Performance Fuel Economy 0~50km/h Max Equivalent CNG time (s) Speed consumption (km/h) (kg/100km)CNGBus 17.9 84.1 38.97HCNG Bus 17.9 84.1 36.11
  56. 56. Some Projects● MOST 863 Project“HCNG engine R & D”● MOST 863 Project “HCNG Bus R/D and Hydrogen Generation by Renewable Energy”, Cooperated with DOE.● MOST 863 Project “Key Technologies Cooperation Research on Hydrogen Utilization based on Hydrogen Infrastructure”
  57. 57. Some Patents● “Calibration method of HCNG Engine”。 China patent:200710062635。● “ HCNG fuel for optimized hydrogen fraction in HCNG engine”。China patent: 200710062636。● “Control and operation methods for different hydrogen fraction in HCNG engine” China patents: 200710175797.9
  58. 58. Some Papers Combustion and emission characteristics of a port-injection HCNG engine under various1 ignition timings, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, JAN 2008, 33(2):816-822 Effects of hydrogen addition on cycle-by-cycle variations in a lean burn natural gas spark-2 ignition engines, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, JAN 2008, 33(2):823-831 Experimental study on thermal efficiency and emission characteristics of a lean burn3 hydrogen enriched natural gas engine, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, DEC 2007, 32(18):5067-5075 Study on the extension of lean operation limit through hydrogen enrichment in a natural4 gas spark-ignition engine, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, FEB 2008, 33(4):1416-1424 Influence of different volume percent hydrogen/natural gas mixtures on idle performance5 of a CNG engine, ENERGY & FUELS, MAY-JUN 2008, 22(3):1880-1887
  59. 59. 其它具有代表性的论文目录(共26篇) Development and validation of a quasi-dimensional combustion model for SI engine6 fuelled by HCNG with variable hydrogen fractions, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, SEP 2008, 33(18):4863-4875 Effects of combustion phasing, combustion duration, and their cyclic variations on7 Spark-Ignition (SI) engine efficiency, ENERGY & FUELS, AUG 2008, 22:3022-3028 Study on combustion behaviors and cycle-by-cycle variations in a turbocharged lean8 burn natural gas S.I. engine with hydrogen enrichment, INTERNATIONAL JOURNAL OF HYDROGEN An investigation of optimum control of a spark ignition engine fueled by NG and9 hydrogen mixtures, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY A Quasi-Dimensional Combustion Model for SI Engines Fuelled by Hydrogen Enriched10 Compressed Natural Gas,SAE Paper No. 2008-01-1633, 2008 Development and Validation of an On-line Hydrogen-Natural Gas Mixing System for11 Internal Combustion Engine Testing, SAE Paper No. 2008-01-1580, 2008
  60. 60. Some ConclusionsLean burn is one of the effective approach for HCNG Engine,and Spark timing optimization is necessary.15~25% Hydrogen fraction in volume of HCNG is a goodrange for the HCNG Engine. Primary Research resultsindicate that 55% Hydrogen fraction in volume of HCNG isalso another choice for the HCNG Engine.Fueled by 20% HCNG the engine’s emission can meet EuroEEV (Enhanced Environmental Vehicle) power output, fuelconsumption can be kept almost unchanged compared withCNG engine.
  61. 61. Prof. Dr. Fanhua MAmafh@tsinghua.edu.cnTEL/FAX: 86-10-62785946State Key Laboratory of AutomotiveSafety & EnergyTsinghua University,Beijing, ChinaThanks for Attention !

×