Ieeep By Quantum Abbasi

1,087 views

Published on

IEEEP Quantum Abbasi Final

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,087
On SlideShare
0
From Embeds
0
Number of Embeds
15
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • K. Abbasi
  • Ieeep By Quantum Abbasi

    1. 1. K. Abbasi By: Engr. K. Abbasi Assistant Professor Hamdard University Quantum Based Cryptographically Secure Communication Mechanism
    2. 2. K. Abbasi <ul><li>Quantum Cryptography </li></ul><ul><li>Quantum Computers </li></ul><ul><li>Key and Key Distribution </li></ul><ul><li>Classical vs. Quantum Crypto-Techniques </li></ul><ul><li>Principle of Q-Bit Measurements </li></ul><ul><li>Q - Theorems </li></ul><ul><li>QKD Protocols </li></ul><ul><li>Secure Communication through QKD </li></ul><ul><li>Example of BB84 Protocol </li></ul><ul><li>Q - Implementation </li></ul><ul><li>Future of Q - Cryptography </li></ul><ul><li>Pitfalls of Q - Cryptography </li></ul><ul><li>Conclusion </li></ul><ul><li>References </li></ul>Agenda:
    3. 3. K. Abbasi <ul><li>Q- Cryptography is the single most successful application of Quantum Computing Theory in the field of Security Engineering and Secure Communication . </li></ul>Quantum Cryptography
    4. 4. K. Abbasi Quantum Computers: <ul><li>Quantum Computer is any device used for computation that makes direct use of Quantum Mechanics </li></ul><ul><li>It is concerened with superposition and entanglement of photons to perform operations on data. </li></ul>
    5. 5. Quantum vs. Classical Registers K. Abbasi
    6. 6. K. Abbasi <ul><li>Perfectly secure bank transactions </li></ul><ul><li>Secret discussions for government officials and military personnel </li></ul><ul><li>Generation of “True’’ Random Numbers </li></ul><ul><li>A good replacement to the ‘Diffie Hellman Key Exchange Algorithm’ </li></ul><ul><li>Solution of Discrete Logarithm Problem </li></ul><ul><li>Solution of Large Key Dsuistributioin Problem </li></ul>Computation Power of Q-Cryptography
    7. 7. K. Abbasi Keys and Key Distribution <ul><li>For given Message – (plaintext): M </li></ul><ul><li>Encryption: C = e (M, K) </li></ul><ul><li>Decryption: M = d (C, K) </li></ul><ul><li>Key distribution is the problem of Securely exchanging the key between sender and receiver </li></ul>Encryption Decryption Ciphertext Original Plaintext Secret Key Secret Key Plaintext Asymmetric (Two Key) Cryptography
    8. 8. K. Abbasi Keys and Key Distribution Key Size (Char) Key Size (Bits) No. of ASCII Char No. of Alternative Keys Time required at 10 6 Decryption/µs Vulnerability Comments 4 32 95 4 2 32 = 4.3x10 9 2.15 millisec – 7 56 95 7 2 56 = 7.2x10 16 10 hours – 16 128 95 16 2 128 = 3.4x10 38 5.4 x 10 18 yrs – 21 168 95 21 2 168 = 3.7x10 50 5.9 x 10 30 yrs Not Recomended 32 256 95 32 2 256 = 1.15x10 77 1.82 x 10 57 yrs Weak, Insecure 128 1024 95 128 2 1024 =1.79x10 308 2.84 x 10 288 yr Good, for some cases 256 2048 95 256 2 2048 =3.23x10 614 5.13 x 10 594 yr Secure for Decades
    9. 9. K. Abbasi <ul><li>Classical Cryptosystems such as RSA rely on the complexity of factoring large integers. </li></ul><ul><li>Quantum Cryptosystems can efficiently break today’s modern cryptosystems, by using the photon’s principles of superimposition and parallel computing. </li></ul><ul><li>Using quantum effects, we can distribute keys in perfect secrecy! </li></ul>Quantum Key Distribution
    10. 10. K. Abbasi Principle of Q-Bit Measurements Rectilinear Diagonal
    11. 11. K. Abbasi Principle of Q-Bit Measurements Rectilinear Diagonal
    12. 12. K. Abbasi Quantum Theorems <ul><li>No-Cloning Theorem </li></ul><ul><li>No-Broadcast Theorem </li></ul><ul><li>No-Teleportation Theorem </li></ul><ul><li>Principle of Q-Measurements </li></ul>
    13. 13. K. Abbasi <ul><li>Quantum Key Distribution Protocols </li></ul><ul><li>Following are the main security protocols for QKD: </li></ul><ul><li>BB84 Algorithm </li></ul><ul><li>B92 Algorithm </li></ul><ul><li>Entanglement-Based QKD Algo. </li></ul><ul><li>Shor's Algorithm </li></ul><ul><li>Grover's Algorithm </li></ul><ul><li>Deutsch-Jozsa Algorithm </li></ul><ul><li>Quantum Adiabatic Algorithm </li></ul>QKD Protocols
    14. 14. K. Abbasi Secure Comm. through QKD <ul><li>BB84 was developed by Charles Bennett & Gilles Brassard in 1984 </li></ul><ul><li>Alice is the authorised Sender </li></ul><ul><li>Bob is the authorised Receiver </li></ul><ul><li>Eve is the unauthorised Eavesdropper </li></ul>Eve Alice Bob
    15. 15. K. Abbasi <ul><li>Alice is going to send Bob a key. </li></ul><ul><li>She begins with a random sequence of bits. </li></ul><ul><li>Bits are encoded with a random basis, and then sent to Bob: </li></ul>BB84 Protocol Bit 0 1 0 1 1 Basis + × × + × Photon
    16. 16. K. Abbasi <ul><li>Bob receives the photons and must decode them using a random basis. </li></ul><ul><li>Some of his measurements are correct. </li></ul>+ 0 + 0 × 0 + 1 × 1 BB84 Protocol Photon Basis ? Bit ?
    17. 17. K. Abbasi Comparison of Bits Alice Bob Photon Basis ? + + × + × Bit ? 0 0 0 1 1 Bit 0 1 0 1 1 Basis + × × + × Photon
    18. 18. K. Abbasi <ul><li>The test bits allow Alice and Bob to test whether the channel is secure or not ? </li></ul><ul><li>As long as no errors have occurred, the test bits should match </li></ul><ul><li>Alice and Bob have now made sure that the channel is secure . The test bits are removed </li></ul><ul><li>Alice tells Bob the basis she used for the other bits , and they both have a common set of bits:…… The Final Key ! </li></ul><ul><li>Alice & Bob Compare full sequence of Bases used </li></ul><ul><li> …… NOT THE BITS </li></ul>The Test Bits and Parity Bits
    19. 19. K. Abbasi Quantum Flow Diagram
    20. 20. K. Abbasi Quantum Bit Error Rate (QBER) <ul><li>The number of wrong bits to the total number of received bits. </li></ul><ul><li>QBER = (N wrong ) / (N right + N wrong ) </li></ul><ul><li>It is normally in the order of a few percent. </li></ul><ul><li>Data Rate with 50% errors are acceptable. </li></ul>
    21. 21. K. Abbasi Implementation: www.idquantique.com <ul><li>CERBERIS </li></ul><ul><li>VECTIS </li></ul><ul><li>CLAVIS </li></ul>
    22. 22. K. Abbasi Implementation: www.idquantique.com <ul><li>Quantis </li></ul><ul><li>- Quantum Random Number Generators (QRNG) </li></ul>
    23. 23. K. Abbasi Implementation: <ul><li>Dee-Waves Systems </li></ul><ul><li>http://www.dwavesys.com </li></ul><ul><li>First Complete Q-Computer Developed </li></ul><ul><li>April 2007: 16-Qubit Computer </li></ul><ul><li>Nov 2007: 28-Qubit Computer </li></ul><ul><li>Feb 2008: First Commerciality Deployable Q-Computer was Launched </li></ul>
    24. 24. Future of Q-Cryptography K. Abbasi <ul><li>Present </li></ul><ul><ul><ul><li>Over 42 miles of optical fibre </li></ul></ul></ul><ul><ul><ul><li>Cambridge, 100 km of optical fibre </li></ul></ul></ul><ul><ul><ul><li>DARPA , 14.5 miles Free-Space N/W </li></ul></ul></ul><ul><ul><ul><li>NW-U, 250 Mbit/sec Q-encrypted Demo </li></ul></ul></ul><ul><li>Future </li></ul><ul><ul><ul><li>Photon Based Secure Money Transfer </li></ul></ul></ul><ul><ul><ul><li>Over 1 Gbit/sec transmissions </li></ul></ul></ul><ul><ul><ul><li>A Q-Cryptographic solution </li></ul></ul></ul><ul><ul><ul><li>Uncrackable Secure Q-Networks </li></ul></ul></ul><ul><ul><ul><li>A complete Q-processor </li></ul></ul></ul>
    25. 25. Pitfalls of Q-Cryptography K. Abbasi <ul><li>Noise Induction Problem…… Natural noise vs. Eavesdropper effect ..?? </li></ul><ul><li>Range Limitations….. 70-100 km </li></ul><ul><li>Generation of one photon per time slot is difficult </li></ul><ul><li>Fragile Q-state … …..coherent & decoherent states, amplification, entanglement </li></ul><ul><li>Qubit Teleportation and Measurement </li></ul><ul><li>Error Correction </li></ul><ul><li>Parity Schemes </li></ul>
    26. 26. Conclusion K. Abbasi
    27. 27. References K. Abbasi <ul><li>Quantum Information Science , Cambridge, http://cam.qubit.org </li></ul><ul><li>Quantum Cryptography, by Bennett, C. H., Brassard, G., Breidbart, S. and Wiesner, S., </li></ul><ul><li>Advances in Cryptology: Proceedings of Crypto 82, August, Plenum Press: 267–275, 1982 </li></ul><ul><li>Error-Check Breakthrough in Quantum Computing , by Simonite, Tom, New Scientist, 2006. http://www.newscientisttech.com/ article/dn9301-errorcheck-breakthrough-in-quantum-computing.html </li></ul><ul><li>16-qubit Superconductor-based Quantum Computers, by D-Wave Systems, February 13, 2007, http://www.dwavesys.com </li></ul><ul><li>Quantum Cryptography and Random-Number Generators , id Quantique, http://www.idquantique.com </li></ul>
    28. 28. K. Abbasi The End…

    ×