Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Extended boost active switched-capacitor switched-inductor quasi-z-source inverters

13 views

Published on

Final Year IEEE Projects for BE, B.Tech, ME, M.Tech,M.Sc, MCA & Diploma Students latest Java, .Net, Matlab, NS2, Android, Embedded,Mechanical, Robtics, VLSI, Power Electronics, IEEE projects are given absolutely complete working product and document providing with real time Software & Embedded training......
----------------------------------------------------------------
JAVA, .NET, NS2, MATLAB PROJECTS:

Networking, Network Security, Data Mining, Cloud Computing, Grid Computing, Web Services, Mobile Computing, Software Engineering, Image Processing, E-Commerce, Games App, Multimedia, etc.,

EMBEDDED SYSTEMS:

Embedded Systems,Micro Controllers, DSC & DSP, VLSI Design, Biometrics, RFID, Finger Print, Smart Cards, IRIS, Bar Code, Bluetooth, Zigbee, GPS, Voice Control, Remote System, Power Electronics, etc.,

ROBOTICS PROJECTS:

Mobile Robots, Service Robots, Industrial Robots, Defence Robots, Spy Robot, Artificial Robots, Automated Machine Control, Stair Climbing, Cleaning, Painting, Industry Security Robots, etc.,

MOBILE APPLICATION (ANDROID & J2ME):

Android Application, Web Services, Wireless Application, Bluetooth Application, WiFi Application, Mobile Security, Multimedia Projects, Multi Media, E-Commerce, Games Application, etc.,

MECHANICAL PROJECTS:

Auto Mobiles, Hydraulics, Robotics, Air Assisted Exhaust Breaking System, Automatic Trolley for Material Handling System in Industry, Hydraulics And Pneumatics, CAD/CAM/CAE Projects, Special Purpose Hydraulics And Pneumatics, CATIA, ANSYS, 3D Model Animations, etc.,

CONTACT US:

ECWAY TECHNOLOGIES
23/A, 2nd Floor, SKS Complex,
OPP. Bus Stand, Karur-639 001.
TamilNadu , India.Cell: +91 9894917187.
Website: www.ecwayprojects.com | www.ecwaytechnologies.com
Mail to: ecwaytechnologies@gmail.com.

Published in: Engineering
  • Be the first to comment

  • Be the first to like this

Extended boost active switched-capacitor switched-inductor quasi-z-source inverters

  1. 1. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT EXTENDED BOOST ACTIVE-SWITCHED-CAPACITOR/ SWITCHED-INDUCTOR QUASI-Z-SOURCE INVERTERS By A PROJECT REPORT Submitted to the Department of electronics & communication Engineering in the FACULTY OF ENGINEERING & TECHNOLOGY In partial fulfillment of the requirements for the award of the degree Of MASTER OF TECHNOLOGY IN ELECTRONICS & COMMUNICATION ENGINEERING APRIL 2016
  2. 2. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT CERTIFICATE Certified that this project report titled “EXTENDED BOOST ACTIVE-SWITCHED- CAPACITOR/ SWITCHED-INDUCTOR QUASI-Z-SOURCE INVERTERS” is the bonafide work of Mr. _____________Who carried out the research under my supervision Certified further, that to the best of my knowledge the work reported herein does not form part of any other project report or dissertation on the basis of which a degree or award was conferred on an earlier occasion on this or any other candidate. Signature of the Guide Signature of the H.O.D Name Name
  3. 3. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT DECLARATION I hereby declare that the project work entitled “EXTENDED BOOST ACTIVE-SWITCHED- CAPACITOR/ SWITCHED-INDUCTOR QUASI-Z-SOURCE INVERTERS” Submitted to BHARATHIDASAN UNIVERSITY in partial fulfillment of the requirement for the award of the Degree of MASTER OF APPLIED ELECTRONICS is a record of original work done by me the guidance of Prof.A.Vinayagam M.Sc., M.Phil., M.E., to the best of my knowledge, the work reported here is not a part of any other thesis or work on the basis of which a degree or award was conferred on an earlier occasion to me or any other candidate. (Student Name) (Reg.No) Place: Date: ACKNOWLEDGEMENT
  4. 4. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT I am extremely glad to present my project “EXTENDED BOOST ACTIVE-SWITCHED- CAPACITOR/ SWITCHED-INDUCTOR QUASI-Z-SOURCE INVERTERS” which is a part of my curriculum of third semester Master of Science in Computer science. I take this opportunity to express my sincere gratitude to those who helped me in bringing out this project work. I would like to express my Director, Dr. K. ANANDAN, M.A.(Eco.), M.Ed., M.Phil.,(Edn.), PGDCA., CGT., M.A.(Psy.) of who had given me an opportunity to undertake this project. I am highly indebted to Co-Ordinator Prof. Muniappan Department of Physics and thank from my deep heart for her valuable comments I received through my project. I wish to express my deep sense of gratitude to my guide Prof. A.Vinayagam M.Sc., M.Phil., M.E., for her immense help and encouragement for successful completion of this project. I also express my sincere thanks to the all the staff members of Computer science for their kind advice. And last, but not the least, I express my deep gratitude to my parents and friends for their encouragement and support throughout the project.
  5. 5. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT ABSTRACT: This paper proposes a new topology named the active-switched-capacitor/switched- inductor quasi-Z-source inverter (ASC/SL-qZSI), which is based on a traditional qZSI topology. Compared to other qZSI-based topologies under the same operating conditions, the proposed ASC/SL-qZSI provides higher boost ability, requires fewer passive components such as inductors and capacitors, and achieves lower voltage stress across the switching devices of themain inverter. Another advantage of the topology is its expandability. If a higher boosting rate is required, additional cells can easily be cascaded at the impedance network by adding one inductor and three diodes. Both the simulation studies and the experimental results obtained from a prototype built in the laboratory validate proper operation and performance of the proposed ASC/SL-qZSI.
  6. 6. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT INTRODUCTION: In a traditional pulse width modulation (PWM) inverter, the obtainable ac output voltage is limited to be less than the dc input voltage, and so, an additional dc–dc boost converter is required to obtain the desired ac output voltage. In order to overcome the limitations of a traditional inverter, a Z-source inverter (ZSI), in which the traditional dc link is replaced with the Z-source network, is introduced. The ZSI can boost the dc voltage by using the shoot-through state of the inverter bridge. Thus, buck–boost capability is achieved with a single power conversion stage, which reduces component count and improves the reliability. Some studies in ZSI have progressed with modeling techniques, control methods, and modulation strategies. The ZSI has been applied to electric vehicles and photovoltaic (PV) power generation systems due to its wide range of obtainable voltage. Recently, some advanced dc–dc conversion techniques combined with the qZSI/ZSI have been proposed in order to increase the boosting ability. Both the C-switching structure with two capacitors and two-three diodes, and the L-switching structurewith two inductors and two-three diodes were proposed Four converter topologies categorized as continuous- or discontinuous- current diode-assisted boost, and continuous- or discontinuous-current capacitor-assisted boost were proposed several types of switched-inductor impedance networks coupled to a ZSI or qZSI were introduced. To enhance the boosting ability, additional cells are cascaded at the generalized switched- inductor and switched-capacitor ZSI or nonisolated dc–dc converter. They provide a high boost capacity and a simple structure in transformerless and cascaded structures.
  7. 7. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT However, additional inductors and capacitors at the impedance network are required for further raising the boost factor, and they increase the cost and size of the power converter. Voltage-fed or current-fed switched inverter topologies for reducing the number of passive components in the impedance network have been proposed. However, the boost factors of both switched inverters are no higher than with traditional ZSI.
  8. 8. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT EXISTING SYSTEM: The Quasi-Z-Source inverter circuit differs from that of conventional Z Source Inverter in LC impedance network interface between the source and inverter. A PV cell’s voltage varies widely with temperature and irradiation, but the traditional voltage Source Inverter (VSI) cannot deal with this wide range without overrating of the inverter, because the VSI is a buck converter whose input dc voltage must be greater than the peak ac output voltage. Because of this, a transformer and/or a dc/dc converter is usually used in PV applications, in order to cope with the range of the PV voltage , reduce inverter ratings, and produce a desired voltage for the load or connection to the utility. This leads to a higher component count and low efficiency, which opposes the goal of cost reduction. The Z-Source Inverter (ZSI) has been reported suitable for residential PV system because of the capability of voltage boost and inversion in a single stage. Recently, four new topologies, the quasi-Z-Source Inverter (qZSI), have been derived from the original ZSI
  9. 9. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT PROPOSED SYSTEM: In this paper, a new topology named an active-switched-capacitor/switched-inductor qZSI (ASC/SL-qZSI) based on traditional qZSI topology is proposed. The proposed ASC/SL- qZSI offers a low number of passive components such as capacitors and inductors in the impedance network, high boost ability, and low voltage stress across the switching devices. Additionally, it can be extended to have a very high boost capability by cascading additional cells.
  10. 10. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT ADVANTAGES:  Expandability.  The cost, size, and weight of the power converter can be reduced
  11. 11. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT BLOCK DIAGRAM:
  12. 12. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT TOOLS AND SOFTWARE USED:  MPLAB – microcontroller programming.  ORCAD – circuit layout.  MATLAB/Simulink – Simulation
  13. 13. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT APPLICATIONS:  PV or fuel-cell generation systems.
  14. 14. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT CONCLUSION: This paper proposed a new ASC/SL-qZSIs based on the qZSI topology.In comparison to other topologies such as CA-qZSI, DA-qZSI, and SL-qZSI, the proposed ASC/SL-qZSI provides a higher boost factor over the whole range of shoot-through duty ratio. Passive components, such as one inductor and one-three capacitors in the impedance network, are reduced in number, although one more switching device is needed.The summarized value of inductances required at the proposed ASC/SL-qZSI is slightly higher than those of both the CA-qZSI and SL-qZSI, and the capacitance value for the proposed topology is much lower than the summarized value of capacitances required at the other three topologies.
  15. 15. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT REFERENCES: [1] F. Z. Peng, “Z-source inverter,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 504–510, Mar. 2003. [2] J. B. Liu, J. G. Hu, and L. Y. Xu, “Dynamic modeling and analysis of Zsource converter- derivation of ac small signal model and design-oriented analysis,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1786–1796, Sep. 2007. [3] Y. Tang, S. J. Xie, C. H. Zhang, and Z. G. Xu, “Improved Zsource inverter with reduced capacitor voltage stress and soft-start capability,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 409–415, Feb. 2009. [4] Q. V. Tran, T. W. Chun, J. Y. Ahn, and H. H. Lee, “Algorithms for controlling both the dc boost and ac output voltage of Z-source inverter,” [5] B. Mirafzal, M. Saghaleini, and A. K. Kaviani, “An SVPWM-based switching pattern for stand-alone and grid-connected three-phase singlestage boost inverters,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1102–1111, Apr. 2011.

×