Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Discontinuous modulation scheme for a differential mode cuk inverter

17 views

Published on

Final Year IEEE Projects for BE, B.Tech, ME, M.Tech,M.Sc, MCA & Diploma Students latest Java, .Net, Matlab, NS2, Android, Embedded,Mechanical, Robtics, VLSI, Power Electronics, IEEE projects are given absolutely complete working product and document providing with real time Software & Embedded training......
----------------------------------------------------------------
JAVA, .NET, NS2, MATLAB PROJECTS:

Networking, Network Security, Data Mining, Cloud Computing, Grid Computing, Web Services, Mobile Computing, Software Engineering, Image Processing, E-Commerce, Games App, Multimedia, etc.,

EMBEDDED SYSTEMS:

Embedded Systems,Micro Controllers, DSC & DSP, VLSI Design, Biometrics, RFID, Finger Print, Smart Cards, IRIS, Bar Code, Bluetooth, Zigbee, GPS, Voice Control, Remote System, Power Electronics, etc.,

ROBOTICS PROJECTS:

Mobile Robots, Service Robots, Industrial Robots, Defence Robots, Spy Robot, Artificial Robots, Automated Machine Control, Stair Climbing, Cleaning, Painting, Industry Security Robots, etc.,

MOBILE APPLICATION (ANDROID & J2ME):

Android Application, Web Services, Wireless Application, Bluetooth Application, WiFi Application, Mobile Security, Multimedia Projects, Multi Media, E-Commerce, Games Application, etc.,

MECHANICAL PROJECTS:

Auto Mobiles, Hydraulics, Robotics, Air Assisted Exhaust Breaking System, Automatic Trolley for Material Handling System in Industry, Hydraulics And Pneumatics, CAD/CAM/CAE Projects, Special Purpose Hydraulics And Pneumatics, CATIA, ANSYS, 3D Model Animations, etc.,

CONTACT US:

ECWAY TECHNOLOGIES
23/A, 2nd Floor, SKS Complex,
OPP. Bus Stand, Karur-639 001.
TamilNadu , India.Cell: +91 9894917187.
Website: www.ecwayprojects.com | www.ecwaytechnologies.com
Mail to: ecwaytechnologies@gmail.com.

Published in: Engineering
  • Be the first to comment

  • Be the first to like this

Discontinuous modulation scheme for a differential mode cuk inverter

  1. 1. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT DISCONTINUOUS MODULATION SCHEME FOR A DIFFERENTIAL-MODE CUK INVERTER By A PROJECT REPORT Submitted to the Department of electronics & communication Engineering in the FACULTY OF ENGINEERING & TECHNOLOGY In partial fulfillment of the requirements for the award of the degree Of MASTER OF TECHNOLOGY IN ELECTRONICS & COMMUNICATION ENGINEERING APRIL 2016
  2. 2. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT CERTIFICATE Certified that this project report titled “DISCONTINUOUS MODULATION SCHEME FOR A DIFFERENTIAL-MODE CUK INVERTER” is the bonafide work of Mr. _____________Who carried out the research under my supervision Certified further, that to the best of my knowledge the work reported herein does not form part of any other project report or dissertation on the basis of which a degree or award was conferred on an earlier occasion on this or any other candidate. Signature of the Guide Signature of the H.O.D Name Name
  3. 3. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT DECLARATION I hereby declare that the project work entitled “DISCONTINUOUS MODULATION SCHEME FOR A DIFFERENTIAL-MODE CUK INVERTER” Submitted to BHARATHIDASAN UNIVERSITY in partial fulfillment of the requirement for the award of the Degree of MASTER OF APPLIED ELECTRONICS is a record of original work done by me the guidance of Prof.A.Vinayagam M.Sc., M.Phil., M.E., to the best of my knowledge, the work reported here is not a part of any other thesis or work on the basis of which a degree or award was conferred on an earlier occasion to me or any other candidate. (Student Name) (Reg.No) Place: Date: ACKNOWLEDGEMENT
  4. 4. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT I am extremely glad to present my project “DISCONTINUOUS MODULATION SCHEME FOR A DIFFERENTIAL-MODE CUK INVERTER ” which is a part of my curriculum of third semester Master of Science in Computer science. I take this opportunity to express my sincere gratitude to those who helped me in bringing out this project work. I would like to express my Director, Dr. K. ANANDAN, M.A.(Eco.), M.Ed., M.Phil.,(Edn.), PGDCA., CGT., M.A.(Psy.) of who had given me an opportunity to undertake this project. I am highly indebted to Co-Ordinator Prof. Muniappan Department of Physics and thank from my deep heart for her valuable comments I received through my project. I wish to express my deep sense of gratitude to my guide Prof. A.Vinayagam M.Sc., M.Phil., M.E., for her immense help and encouragement for successful completion of this project. I also express my sincere thanks to the all the staff members of Computer science for their kind advice. And last, but not the least, I express my deep gratitude to my parents and friends for their encouragement and support throughout the project.
  5. 5. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT ABSTRACT: The differential-mode C´ uk inverter (DMCI) is a single-stage inverter with low device count. It offers advantages over other topologies because of compactness, higher power density, and reduced cost. It is a promising topological configuration for renewable-/alternative-energy applications with isolated as well as nonisolated structures. The continuous modulation scheme (CMS), which was introduced originally for this inverter, activates all the modules of the DMCI. The new discontinuous modulation scheme (DMS) deactivates one module in each half line- cycle leading to discontinuous operation of modules. This paper outlines the DMS and a mechanism to realize it. The experimental open-loop and closed-loop results of the DMCI using CMS and DMS are provided along with a comparison of their performances. It is shown that, the DMS reduces the circulating power and hence mitigates the losses. The voltage ratings of the devices also are reduced with theDMS. In contrast, theCMShaswider linearity in its normalized dc-voltage gain and yields reduced harmonic distortion of the output voltage. For DMS, to achieve comparable linearity in normalized dc-voltage gain and distortion, harmonic compensation under closed-loop control is a pathway that has been demonstrated
  6. 6. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT INTRODUCTION: Typical transformer-less topologies have a cascaded boost–buck or buck–boost architecture, which may yield common mode leakage current for some applications. For such applications and others, an isolated HFL inverter topology is a relevant choice. Kim et al. introduce a bidirectional multistage HFL topology, while the topologies outlined in support unidirectional power flow. While several HFL-inverter topologies include a front-end dc–dc converter followed by a decoupling dc capacitor, other multistage topologies preclude the need for an intermediate dc-link electrolytic capacitor. Overall, for low-power applications the cost-benefit tradeoff of a multistage HFL inverter topology requires careful attention. As such, for low-power single-phase HFL inverter applications, there is an enhanced thrust to seek single-stage topological solutions Single-stage topologies are categorized, reviewed and compared by literatures Long et al. present z-source inverter topologies, while introduces C´ uk-derived single-stage topology. Differential inverters are group of singlestage topologies that consist of parallel-series connection of two dc converters. Chen and Wang present differential buck while differential boost is discussed. Differential flyback is one of the candidate topologies for microinverters with three controlled devices (with two of them being high-side devices) and three diodes. However, this topology cannot support bidirectional power flow, which will require additional controllable devices.
  7. 7. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT Further current on the secondary side of the bridge is discontinuous in nature. Moreover, the magnetizing current of the isolation transformers is subjected to linefrequency components which affect the size of the transformer. The differential topology introduced by Kjaer and Blaabjerg has the line-frequency penetration on magnetizing current of transformer problem too. Sivasubramanian and Mazumder introduce parallel–parallel isolated configurations with C´ uk converter, but with eight controllable switches.
  8. 8. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT EXISTING SYSTEM: The buck–boost converter is a type of DC-to-DC converter that has an output voltage magnitude that is either greater than or less than the input voltage magnitude. It is equivalent to a flyback converter using a single inductor instead of a transformer. The output voltage is of the opposite polarity than the input. This is a switched-mode power supply with a similar circuit topology to the boost converter and the buck converter. The output voltage is adjustable based on the duty cycle of the switching transistor. One possible drawback of this converter is that the switch does not have a terminal at ground; this complicates the driving circuitry. Neither drawback is of any consequence if the power supply is isolated from the load circuit (if, for example, the supply is a battery) because the supply and diode polarity can simply be reversed. The switch can be on either the ground side or the supply side
  9. 9. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT PROPOSED SYSTEM: The DMCI topology comprises two modules, which are connected in parallel at the dc side and connected in series at the ac side. The differential-mode inverter comprises limited number of switches all of which are low-side driven. Further, the inverter has the ability to support bidirectional power flow using the same set of switches and a seamless control. An added capability of the HFL C´uk inverter is its ability to support line-frequency ripple current without a large isolation transformer. Due to the presence of the two blocking capacitors on the primary and secondary side of the transformer, the magnetizing current of the transformer is essentially devoid of any line-frequency current component. Finally, the possibility of coupled inductors and transformer has been introduced, which enhances the compactness of the inverter and leads to reduced input and output ripples. The original DMCI topology outlined switching of the inverter using a continuous modulation scheme (CMS), in which diagonal devices switch simultaneously and continuously. In CMS, one module pulls the power while the other one pushes it. This leads to circulation of power yielding higher switching and conduction losses. Further, the continuous modulation of all of the switches implies that a control system for this inverter sees an eighth-order dynamics under all operating conditions which has adverse implications on control bandwidth.
  10. 10. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT ADVANTAGES:  Voltage step-up and step-down functionalities.  Reduced cost.  Reliability.  High power density
  11. 11. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT BLOCK DIAGRAM:
  12. 12. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT TOOLS AND SOFTWARE USED:  MPLAB – microcontroller programming.  ORCAD – circuit layout.  MATLAB/Simulink – Simulation
  13. 13. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT APPLICATIONS:  Drives
  14. 14. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT CONCLUSION: The paper describes a DMS for a DMCI and compares the mechanism and performance of the DMS-based DMCI to that of a prior-art CMS-based DMCI. An experimental hardware prototype was developed for the DMCI to validate and compare the results obtained using the two modulation schemes focusing on energy-conversion efficiency, device rating, output-voltage distortion, and transient response of the inverter. It has been found that DMS, which leads to topological switching of the DMCI, yields significant improvement in efficiency of the inverter compared to that obtained using CMS. This is because DMS eliminates the pathway for circulating reactive power in the DMCI. For the same reason, the reduction in the voltage rating of the DMCI switches is also found to be significant using DMS.
  15. 15. OUR OFFICES @CHENNAI/ TRICHY/ KARUR / ERODE / MADURAI / SALEM / COIMBATORE / BANGALORE / HYDRABAD CELL: 9894917187 | 875487 1111 / 2111 / 3111 / 4111 / 5111 / 6111 Visit: www.ecwaytechnologies.com | www.ecwayprojects.com Mail to: ecwaytechnologies@gmail.com ECWAY TECHNOLOGIES IEEE SOFTWARE | EMBEDDED | MECHANICAL | ROBOTICS PROJECTS DEVELOPMENT REFERENCES: [1] H. S. Kim, M. H. Ryu, J. W. Baek, and J. H. Jung, “High-efficiency isolated bidirectional ac– dc converter for a dc distribution system,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1642–1654, Apr. 2013. [2] S. Harb and R. S. Balog, “Reliability of candidate photovoltaic moduleintegrated- inverter (PV-MII) topologies—A usagemodel approach,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 3019–3027, Jun. 2013. [3] A. Rahnamaee and S. K.Mazumder, “A soft-switched hybrid-modulation scheme for a dc- link-capacitor-less three-phase pulsating-dc-link inverter,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3893–3906, Jun. 2014. [4] S. K.Mazumder, “Anovel hybrid modulation scheme for an isolated highfrequency- link fuel cell inverter,” in Proc. IEEE Power Energy Soc. Gen. Meet., 2008, pp. 1–7. [5] H. Bayat, J. S. Moghani, S. H. Fathi, and H. Riazmontazer, “Implementation of a 5 level cascade H-bridge inverter using PWM strategy with unequal carrier frequency for optimizing and reducing the switching number,” J. Int. Rev. Elect. Eng., vol. 6, no. 1, pp. 23–29, Feb. 2011

×