Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Congestion Control in Recursive Network Architectures

693 views

Published on

Presentation on Congestion Control in Recursive Network
Architectures at IETF 95, in the IRTF research group, Internet Congestion Control (ICCRG) meeting.

Published in: Technology
  • Be the first to comment

Congestion Control in Recursive Network Architectures

  1. 1. Congestion Control in Recursive Network Architectures David Hayes, Peyman Teymoori, and Michael Welzl University of Oslo [davihay,peymant,michawe]@ifi.uio.no IETF95 Buenos Aires — ICCRG David IETF95 Buenos Aires — ICCRG 1 / 9
  2. 2. Pristine: Who we are and what we’re doing ict-pristine.eu RINA Recursive Inter-Network Architecture tools RINA simulator Omnet++ RINA sdk C++ Research Security Congestion Control Routing Scheduling and QoS Standards Pouzin Society ISO David IETF95 Buenos Aires — ICCRG 2 / 9
  3. 3. The Internet and Recursive Architectures Internet Application TCP/UDP IP Link LLC MAC Physical QoS, MPLS, etc Proxies, middle boxes, etc Recursive Architecture Application Generic Layer ... Generic Layer Physical Examples include: Recursive Inter-Network Architecture (RINA) http://www.pouzinsociety.org/ Recursive Network Architecture (RNA) http://www.isi.edu/rna/ David IETF95 Buenos Aires — ICCRG 3 / 9
  4. 4. Comparative RINA Example S1 R1 Router1 TCPStack Split-TCP Stack L1 L2 L3 L4 RINA Stack 2-DIF 1-DIF 1-DIF EFCP RMT EFCP RMT EFCP RMT EFCP RMT EFCP RMT EFCP RMT EFCP RMT L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L1 L2 L3 L4 L1 L2 L3 L4 TCP S1 R1 Router1 TCPStack Split-TCP Stack L1 L2 L3 L4 RINA Stack 2-DIF 1-DIF 1-DIF EFCP RMT EFCP RMT EFCP RMT EFCP RMT EFCP RMT EFCP RMT EFCP RMT L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L1 L2 L3 L4 L1 L2 L3 L4 Split TCP S1 R1 Router1 TCPStack Split-TCP Stack L1 L2 L3 L4 RINA Stack 2-DIF 1-DIF 1-DIF EFCP RMT EFCP RMT EFCP RMT EFCP RMT EFCP RMT EFCP RMT EFCP RMT L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L1 L2 L3 L4 L1 L2 L3 L4 RINA S1 R1 Router1 TCPStack Split-TCP Stack L1 L2 L3 L4 RINA Stack 2-DIF 1-DIF 1-DIF EFCP RMT EFCP RMT EFCP RMT EFCP RMT EFCP RMT EFCP RMT EFCP RMT L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L1 L2 L3 L4 L1 L2 L3 L4 S1 R1 Router1 TCPStack Split-TCP Stack L1 L2 L3 L4 A ck 2-DIF EFCP RMT EFCP RMT EFCP RMT L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L1 L2 L3 L4 L1 L2 L3 L4 From P. Teymoori, M. Welzl, G. Stein, E. Grasa, R. Riggio, K. Rausch, and D. Siracuss. Congestion control in the recursive internetwork architecture (RINA). In IEEE International Conference on Communications (ICC), Next Generation Networking and Internet Symposium, May 2016. to appear David IETF95 Buenos Aires — ICCRG 4 / 9
  5. 5. Congestion Control Types of “solvable” Network Congestion Network adaption – traffic rerouted along less congested paths Network restriction – admission control and policing End system adaption – traffic sources adjust send rates Recursive CC work in RINA Stability of chained and stacked congestion controllers Congestion signals and how they influence performance Stable scalable new types of congestion control David IETF95 Buenos Aires — ICCRG 5 / 9
  6. 6. Recursive Congestion Signals ISP 1 Access ISP 2 Access GWGW Public Internet Layer Inter ISP Layer ISP 1 Layer ISP 2 Layer ServerHost David IETF95 Buenos Aires — ICCRG 6 / 9
  7. 7. Recursive Congestion Signals ISP 1 Access ISP 2 Access GWGW Public Internet Layer Inter ISP Layer ISP 2 Layer ServerHost ISP 1 LayerX David IETF95 Buenos Aires — ICCRG 6 / 9
  8. 8. Recursive Congestion Signals ISP 1 Access ISP 2 Access GWGW Public Internet Layer Inter ISP Layer ISP 1 Layer ISP 2 Layer ServerHost X Feedback options in RINA Implicit: Push back and push up Explicit: Packet marking and reflection Control packet notifications David IETF95 Buenos Aires — ICCRG 6 / 9
  9. 9. Recursive Congestion Signals ISP 1 Access ISP 2 Access GWGW Public Internet Layer Inter ISP Layer ISP 1 Layer ISP 2 Layer ServerHost X Feedback options in RINA Implicit: Push back and push up Explicit: Packet marking and reflection Control packet notifications Potentially provides Faster responses Smaller buffer requirements Cautions — Current research CC interactions Stability David IETF95 Buenos Aires — ICCRG 6 / 9
  10. 10. Stable CC inspired by Logistic Growth in Nature 0 2 4 6 8 K t Population,P(t) P(t) = KP0ert K+P0(ert −1) P.-F. Verhulst. Notice sur la loi que la population poursuit dans son accroissement. Correspondance math´ematique et physique, 10:113–121, 1838. URL http://books.google.com/?id=8GsEAAAAYAAJ David IETF95 Buenos Aires — ICCRG 7 / 9
  11. 11. Logistic Growth Based Congestion Control Competition for resources incrementally for senders: xi (t + 1) = xi (t)ri  C − xi (t) − N − 1 N N j=1 xj   + xi (t) Recursive layered congestion control – ongoing predator–prey food chain based CC has calculable convergence and stability properties David IETF95 Buenos Aires — ICCRG 8 / 9
  12. 12. Conclusions and Future work Stability and CC interactions also relate to the current Internet New CC can work in the Internet as well Upcoming publication: P. Teymoori, M. Welzl, G. Stein, E. Grasa, R. Riggio, K. Rausch, and D. Siracuss. Congestion control in the recursive internetwork architecture (RINA). In IEEE International Conference on Communications (ICC), Next Generation Networking and Internet Symposium, May 2016. to appear RINA congestion control in data centers Congestion control signals and stability OCARINA (Optimizations to Compel Adoption of RINA) (see https://titan.uio.no/node/1403) Acknowledgements The authors are funded by the European Community under its Seventh Framework Programme through the PRISTINE project (CNECT-ICT-619305). The views expressed are solely those of the authors. For more information about PRISTINE see http://ict-pristine.eu/ David IETF95 Buenos Aires — ICCRG 9 / 9
  13. 13. Extra slides David IETF95 Buenos Aires — ICCRG 1 / 1

×