Storages for (solar) heating systems at domestic, community and industrial scales | Klaus Vajen
Storages for (solar) heating systems
at domestic, community and industrial scales
Klaus Vajen, Kassel University (DE), Inst. of Thermal Engineering, Edinburgh, 21.10.14
1. Introduction
2. Conventional (solar) thermal storages
3. New storage developments > 3 m³
4. Systems with 50+ solar heating
5. Solar heat for industrial processes
6. New concept for district heating
≈ 25 scientists + students + spin-offs
R&D:
Coordination:
• MSc-programme „Renewable Energies and Energy Efficiency“
• Europewide PhD-education in solar heating (SolNet)
• Council „Teaching RE at Universities“ in German speaking countries
• Solar World Congress in Kassel 2011
• …
2
• (solar) thermal energy systems
• energy efficiency in buildings
• advice to policy makers
• higher education
Solar- and Systems Engineering
3
Angebot & Bedarf
2.
8
5.
5
6.
6
7.
4
8.
1
8.
8
9.
6
10
.3
11
.1
11
.8
12
.5
13
.3
14
.0
14
.7
15
.5
16
.2
17
.0
17
.7
18
.4
19
.2
19
.9
22
.4
Zeit [h] ->
Angebot 5m² Bedarfsdeckung 90%
Angebot & Bedarf
2.
8
5.
5
6.
6
7.
4
8.
1
8.
8
9.
6
10
.3
11
.1
11
.8
12
.5
13
.3
14
.0
14
.7
15
.5
16
.2
17
.0
17
.7
18
.4
19
.2
19
.9
22
.4
Zeit [h] ->
Angebot 5m² Bedarfsdeckung 90%
120 24
Tageszeit [h]
Leistung[kW]
15
20
12
6
3
power(kW)
time of day (h)
Solar irradiance on a 5 m² collector area
and domestic hot water demand of a single family dwelling
picture: H. Drück, Stuttgart Univ.
Why diurnal storage?
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
TWW
DHW and space heating
Without seasonal storage:
Solar contribution limited to ≈ 25% of the overall heat demand
Why seasonal storage?
kWh / month
solar radiation
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
TWW
DHW and space heating
Higher solar fraction:
Larger collector area and seasonal store neccessary
Why seasonal storage?
kWh / month
solar radiation
6
Why do we store heat?
System
optimization
Peak generation
Peak load
Increase
solar fraction
Increase
comfort
Improvement of
system reliability
Heat storage
sensible heat
solid solid/
liquid
liquid
- water
- heat transfer oil
latent heat
solid/liquid
organic
inorganic
liquid/gaseous
chemical
reaction heat
7
Mediums to store heat
10.000
1.000
100
theoretical energy density of storage mediums
MJ/m³
10 20 40 100 200 400 1.000
temperature in °C
• real densities compared to water
– latent 1 ... 2
– sorption 2 … 3
– chemical 4 …10
• water most important
storage medium
in domestic applications
Overview: Heat Storages Mediums
Picture: Hadorn (CH) 2005
Domestic buildings
• (solar) domestic hot water (dhw)
• (solar) dhw and space heating
• (solar) district heating
• „solar houses“ – high solar fractions
Non residential
• dhw
• industrial process heat
9
Typical applications of heat stores
picture: C. Brunner, AEE INTEC (AT)
solar fraction: 60% of energy for hot water demand
picture: H. Drück, Stuttgart Univ.
Solar domestic hot water
storage: potable water, ca 300 l
cold water
hot water
ca 5 m²
solar fraction: 25% of the overall heat demand
picture : H. Drück, Stuttgart Univ.
Solar assisted space heating
storage: heating water, ca. 700 l
ca 12 m²
Source: Simulation study from Uni Stuttgart (DE), SFH in Würzburg ENEV 2005, Slide H. Drück
solar
fraction
25m²/30m³ 35m²/10m³
Solar assisted space heating: simulations
Aim:
collector area
Overview water storages > 3 m³
Common challenges
• logistics (volume limited to ≈ 750 l before)
• space demand
• costs
picture: ITW, Stuttgart Univ. (DE)
State of the art
Pro
• most common solution
• simple logistics
• pressurized
Contra
• high costs and heat losses
• much space needed
• complex assembling and hydraulic integration
15
picture: Bauer Lmt. (DE)
Storage cascade of single tanks
Pro
• customizable
Contra
• complex assembling and welding
• high costs for individually planned system
16
Picture: Thüsolar Lmt (DE)
On site welded steel tank
State of the art
Pro
• available
Contra
• difficult logistics
• only for non-residential and new building
• expensive
17
picture:
Jenni Energietechnik (CH)
Monolithic steel storage
State of the art
Pro
• „zero“ space demand in building
Contra
• costly logistic
• groundwork necessary
• heat losses depend on geology
18
picture: Mall Lmt (DE)
New developments
Buried buffer storage
Pro
• simple logistics
• inexpensive
• optimized space utilization
Contra
• mounting only by specialists
19
picture: fsave Lmt (DE)
New developments
Modularly erected PP-H storage
Pro
• resistant to high temperatures
• stainless
Contra
• complex and costly mounting
• high costs of GRP
20
picture: Haase Lmt (DE)
GRP = glass-fibre reinforced plastic
New developments
On site laminated GRP buffer storage
21
Pro
• simple logistics
• good space utilization
• pressurized
Contra
• not cheap
• (dis)charging
picture:
Consolar Lmt (DE)
New developments
Collective insulated storage cascade
22
New storage developments > 5 m³
Mall FSAVE Solartechnik Haase
Energietechnik
Consolar
features buried
unpressurized
cubic
unpressurized unpressurized pressurized < 2,5 bar
materials concrete and
stainless steel
PP, PU GRP plastics, steel
typical
application
(old and) new
building
old and new
building
old and new
building
old and new
building
⇨ use of new materials (concrete, plastics)
⇨ new designs (not necessarily cylindrical)
new technical options
Mall FSAVE Solartechnik Haase
Energietechnik
Consolar
logistics
costs
space
demand
New storage developments > 5 m³
Potential for solar process heat in Germany
Potential for solar process heat in Germany
≈ 16 TWh/a (3,4 %)
=> 25 GWth
Industry
27%
Services, etc.
16%
Households
28%
Transport
29%
<100 C
21%
100..200 C
8%
200..300 C
2%
300..500 C
4%
>500 C
65%
Heat
74%
Cooling
1%
mech. Energy
22%
IT
1%
Lighting
2%
32
Integration on supply level – hot water
• Feed-in solar energy in heating circuit
• High set temperature
• Simple system integration 34
Integration on process level
• Solar energy is directly used for the process
• Different system layouts possible
• Often complex system integration 35
Characteristics of suitable processes
for solar heating
• High and continuous heat demand
• Low temperature level (< 100 °C)
• Maximal demand during summer
• Water as medium for the process
• Storage internally available
nice to have
must
36
Suitable processes
37
• Pre-heating of raw materials
• Cleaning and washing
• Pasteurization, sterilization
• Surface treatment
• Drying
• Boiler feed water
• Supply of hot water or steam
• ...
Processes utilized as storages
Possibility to increase system performance and reduce system costs
• reduction of stagnation during off-times
• reduced volume of solar buffer tank
• …
Feasibility depends on
• maximum temperature
• sedimentation or cleaning periods
• …
38[www.gz-online.de]
[KRONES]
Electro plating baths
Tunnel pasteurizer for beverages
Tannery in Thailand
• Hot water for processes (30..80 °C)
• 1,3 MW evacuated tube collectors
• 35 m³ storage in containers
39Source: Aschoff Solar
44
Low temperature district heating: flow temperature ≈ 40°C,
in operation only during heating season
central heat
pump
ground regeneration
(swimming pool
absorbers)
borehole heat
exchanger
New concept for district heating
• heat supply without gas and oil
• efficient technology
(geothermal heat pump and solar heating system)
• negligible heat losses through distribution (≈ 2,5 %)
„cold“ district heating
(flow temp. ≈40°C)
decentral heating systems
(solar thermal and
electrical heating element )
• small heat stores is mature technology
• several large storages > 3 m³ recently developed
• seasonal storages usually expensive due to few storage cycles/a
• > 10 x cheaper to store heat instead of el. or chemical energy
• new options with large storages and district heating
• R&D
• decreased heat losses (vacuum insulation)
• new materials for container and storage
(increased energy density)
• further decrease costs!
Conclusions
contact: solar@uni-kassel.de
Potential in European countries
48
0
1
2
3
4
5
0
4
8
12
16
Germany Italy Spain Austria Portugal Netherlands
SHIPpotential/industrialheatdemand[%]
TechnicalSHIPpotential[TWhperyear]
SHIP Potential for EU 25 ≈ 70 TWh/a =>
approx. 110 GWth
(Source: IEA SHC Task 33/IV)
49
Kombispeicher
mit integriertem Brennwertkessel,
externem TWW-Wärmeübertrager
und Schichtbeladeeinrichtung,
Fa. Solvis
Kombispeicher mit
integrierter
Rohrschlange zur
TWW-Bereitung,
Fa. Viessmann
Tank-in-Tank-
Speicher,
Fa. Wagner
Verschiedene Kombispeicher
..
Innovative Weiterentwicklungen für Spezialmärkte
• Innovative Weiterentwicklungen für SpezialmärkteFirma Paradigma Consolar Wagner
Besonderheiten Direkteinbindung des
Kollektors
Behälter aus Polypropylen,
drucklos
Entleerung der Kollektoren
bei Pumpenstillstand
Spezialmarkt Nachrüstung bestehender
Heizungsanlagen
leicht einbringbar,
korrosionsfrei
südliche Länder mit
häufigen Stromausfällen
Konz. Kollektoren mit fixer Spiegelfläche
• Niedrige Windlast, geringes Gewicht, geringe Höhe (<1m)
• Ca. 40 m² pro Modul
60
www.tsc-concentra.com
(Source: E. Frank, SPF HSR)
120-250 C
Solar Dampferzeugung ALANOD GmbH
• Alanod GmbH, Ennepetal
• Direkte Dampferzeugung mit Parabolrinnenkollektoren
• 108 m² Kollektorfläche
• 4 bar, 143 °C
Solare Dampferzeugung ALANOD GmbH
steam drum
recirculation pump
process 1 process 2
feedwater pump
pressure control valve
solarfield
conventional
steam system
condensate return
feedwater
69
Solare Dampferzeugung ALANOD GmbH
Betriebserfahrungen :
• Fehlerfreie und verlässliche Dampfproduktion und
Einspeisung
• Geringer Dampfmassenstrom (niedriger
Systemnutzungsgrad)
• Lange Anfahrzeit (Ausrichtung und Fokussierung)
• Technisch machbar, allerdings hohe Kosten
Verbesserungsmaßnahmen: 70
Feinkost Merl
• Hot water demand for food production ≈ 30 m³/d, 60°C
• 568 m² flat plate collectors
• 10 x 3 m³ buffer stores
• 280 MWh/a, solar fraction 40 %
• 300 €/m² system costs
• 570 m² Flachkollektoren zu WW-Bereitstellung
• Ein Jahr für die Analyse des Wärmeverbrauchs
• Vier Wochen Installation
• In Betrieb seit April 2010
71
Gasdruckregelanlage
• Gasentspannung vor lokalem Gasnetz (90..16 bar)
=> Gaserwärmung um ca. 25 K („Gefrierschutz“)
• Niedriges Temperaturniveau (≈ 20..40 °C)
• Nahezu konstanter Bedarf
• 0,2 % des Energieinhalts wird benötigt
• 0,5 bis 4 GWh/a für eine Station
• Solaranlage mit 355 m² FK und 25 m³ Speicher
73
70 kWth in Bever (CH), Tout = 190 °C
• 115 m² zur Dampfbereitstellung
76(Source: E. Frank, SPF HSR)
360 kWth in Saignelegier (CH), Tout = 125 °C
• 630 m² zur Bereitstellung von Heißwasser
77(Source: E. Frank, SPF HSR)
Berger Fleischwaren
• Sieghartskirchen, Österreich
• WW für Reinigungsprozesse (40..70 °C)
• Vorwärmung Kesselspeisewasser (28..93 °C)
• 1.100 m² FK (770 kW)
• 60 m³ Speicher
• 470 kWh/m²
• 45 €/MWhsol
(Source: S.O.L.I.D.)
Heineken I
• Brauerei Göss, Österreich
• Solarunterstützes Maischen
(80..90 °C)
Speisewasseraufheizung
(15..85 °C)
• 1.500 m² FK (1 MW)
• 200 m³ Pufferspeicher
• Inbetriebnahme
6/2013
(Source: C. Brunner, AEE INTEC)
Heineken II & III
• Brauerei Valencia, Spanien
• Solarunterstütze Tunnelpasteurisation (65..85 °C)
• 1.600 m² FK (1,1 MW), 350 m³ Pufferspeicher
• Mälzerei Vialonga, Portugal
• Trocknung von Grünmalz
• 4.700 m² FK (3,3 MW), 400 m³ Pufferspeicher
• Inbetriebnahme Frühling 2014
• Erwarteter Wärmepreis: ca. 30..40 €/MWhsol
Nestle Waters
• Riad, Saudi Arabien
• Warmwassererzeugung für Flaschenwaschmaschine (70 °C)
• 515 m² FK (360 kW), 15 m³ Speicher
• In Betrieb seit 01/2012
(Source: Millennium Energy Industries)
Prestage Food
• North Carolina, USA
• Warmwassererzeugung (>60 °C) für Reinigung
• Bedarf 570 m³/d
• 7.800 m² FK (5,5 MW), 850 m³ Speicher
• 50 % Deckung
• In Betrieb seit 2012
• Contracting
(Source: FLS Energy)
Gatorade Pepsico
• Phoenix, AZ, USA
• Warmwasser für UO (30..50 °C)
• 3.800 m² FK (2,7 MW) , 115 m³ Speicher
• 1090 kWh/m²
(Source: S.O.L.I.D.)
Potential of industrial sectors in Germany
87
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
TechnicalSHIPPotential(TWhperyear)
200..300°C
100..200°C
<100°C incl. HW and SH
(Source: Lauterbach et al., The potential of solar heat for industrial processes in Germany,
Renewable and Sustainable Energy Reviews, in print)
TechnicalSHIPPotential(TWh/a)
<100°C
100..200°C
200..300°C
Innovatives Wärmeversorgungskonzept
für die zeitgemäße Siedlung „Zum Feldlager“
Wärmebedarf aus dem Erdwärmesondenfeld inkl. zentrale Wärmepumpe:
Heizung: 1.199,4 MWh/a
Warmwasser: -
Kältebedarf aus dem Erdwärmesondenfeld:
Freie Kühlung: 318,6 MWh/a
Solarthermische Wärmeeinspeisung in das Erdwärmesondenfeld; Umfang
nach Bedarf.
Geplante Systemkonfiguration des EWS-Feldes
nEWS = 92
LEWS = 120 m
nEWS LEWS = 11.040 m
Qsolar = 700 MWh/a
Innovatives Wärmeversorgungskonzept
für die zeitgemäße Siedlung „Zum Feldlager“
Regeneration des Erdreichs mit Solarthermie
Unabgedeckten Kollektoren
(„Schwimmbadabsorber“)
• Sehr günstig und effektiv, ca. 1 ct/kWh Wärme
• Ca. 1.500 m² Fläche, ca. 1 GWh Einspeisung
Dachflächen
• Dächer der MFH: ca. 565 m² (Roter Rahmen)
• Carports Reihenhäuser: ca. 480 m²
(Schwarzer Rahmen)
• Carports MFH: ca. 570 m² (Blauer Rahmen)
• Gesamt verfügbare Fläche: ca. 1615 m²
Preliminary
• heat for space heating
from district heating
transfer station
• domestic hot water from
solar thermal energy and
electrical heating element
New concepts for district heating
Heat supply in the houses
‘cold’ district heating (40°C)
2
1
3
4
51 fresh water station
2 solar collector
3 storage with heating element
4 space heating
5 district heating transfer station