316 kiran d. devade

834 views

Published on

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
834
On SlideShare
0
From Embeds
0
Number of Embeds
17
Actions
Shares
0
Downloads
38
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

316 kiran d. devade

  1. 1. IV th International Conference on Advances in Energy Research Indian Institute of Technology, Bombay 10th to 12th December 2013 Effect Of Orifice Diameter and Exit Valve Angles on Converging Vortex Tube PAPER CODE: 316 By: Mr. Kiran D. Devade, Indira COEM, Pune, Maharashtra Dr. Ashok T. Pise, Dy. Director, DTE (Maharashtra State)
  2. 2. Contents 2     Introduction Relevance, State of art, Proposed work Development Design, Types Experimental Method Test Rig , Expt. Procedure, Data Reduction Results and Discussion Effect of Pressure and, Conical Angles, COP, Cooling Effect   Conclusion with Scope for future ICAER 2013 References 11 December 2013
  3. 3. Introduction 3 Vortex tube is a very simple, cost effective, reliable, maintenance-free compact size and no moving parts  It separates compressed air into the two streams i.e. hot and cold stream  ICAER 2013 11 December 2013
  4. 4. Principle of Working 4 Compressed Air In Vortex Chamber Water Jacket Cold Orifice Water Jacket Cold Air Out ICAER 2013 11 December 2013 Hot Air Out
  5. 5. Theories Proposed 5       Adiabatic Compression and Expansion Effect of Friction and Turbulence Free and Forced Vortex theory Acoustic Streaming model Secondary Circulation Heat Transfer Theory Black Magic ?? ICAER 2013 11 December 2013
  6. 6. Literature Review 6 Sr . Year N o Researchers Research Results Georges Ranque Ranque effect Hot and Cold air streams Ranque-Hilsch Tube Same Separation of gas separate gas mixtures, 1. 1931 2. 1945 Rudolph Hilsch 3. 1967 Linder stormLang 4. 1979 Takahama Steam in VT Energy Separation 5. 1979 Takahama Two Phase Propane Separation 6. 1988 R.T. Balmer 11 December 2013 Liquid WaterICAER 2013 Energy separation tube
  7. 7. State of Art Sr. 7 No. Investigator 1. Mohammad Sadegh et.al. 2. K. Dincer, et.al. 3. 4. Year 2011 2009 CMR 0 to 1 0 to 1 Volkan Kırmacı 2009 0.5 K. Dincer, et.al. 2010 0.1 to 0.9 L/D Pressure 21 15 2bar, 3 bar Valve Angles 500 200 To 300 to 1800 400 Kpa 15 150 To 700 Kpa 15 260 & 300 Kpa Nozzle Number Results 2 The performance of curved vortex tube is depends on the value of turning angle 2 4 6 most efficientplug diameter of 5 mm , 300 valve angle, 2 3 the temperature 4 gradient between the 5 hot and cold outlets has 6 c/s decreased with nozzle area numbers 2x2 2,3,4,5, 6 with Variation of the exergy 3x3,4x4 efficiency decreased ICAER 2013 ,5x5 11 December 2013 with decreasing Pi, x, C/s v
  8. 8. Sr. No . 8 5. Investigator Year Burak Markal, 2010 et.al. CMR 0 To 1 Prabakaran.j 6. Vaidyanathan. 2010 s - Prabakaran.j 7. Vaidyanathan. 2010 s - 8. 9. Kun Chang et.al. Maziar arjomandi 2011 2007 0 To 1 0.17 To L/D 10 20 30 40 Valve Pressure Angle s 3, 4, 5 bar 30 45 60 75 10 2 To 4 bar - 20 4 to 7 bar - 12 0.4 Mpa - Nozzle Number Results 2 conical valves with a smaller angle in order to improve the performance of the vortex tubes with smaller L/D. Nozzle better cooling effect the diameter optimum value of orifice 2,3,5 diameter is 5mm and Single nozzle diameter is 3 mm Nozzle Nozzle When the diameter of the diameter orifice is 6 mm (0.5 D), it 2,3,5 produces best cooling Single effect Nozzle 3 4 6 ICAER 2013 - - - 1 Increasing number of nozzle intakes can obtain the highest possible temperature he efficiency of the tube is 11 December 2013 maximised when the area ratio is between
  9. 9. 9 Sr. Investigato Year No. r CMR Maziar arjomandi 10. 2007 Yunpeng xue - B Ahlborny, 11. J Camirey 1996 and J U Kellerz 0.05 to 0.95 Nozzle Pressu Valve Additional L/D Numbe re Angles Work r Vortex Generator 2 is used of 3 1 Varying 4 angles, 5 bar 2.479 to 23.069 33 to 2.5 67 Kpa ICAER 2013 - 4 Low pressure is used with Vacuum Pump 11 December 2013
  10. 10. Proposed Work 10 To develop a vortex tube of L/D = 16 having converging type of cone.  Use of conical valves of 300,450,600,900  2 nozzle entries  Orifice diameters of 5,6,7 mm are used  Brass tube is fabricated.  ICAER 2013 11 December 2013
  11. 11. Constructional Details 11 ICAER 2013 11 December 2013
  12. 12. Vortex Tube Geometry 12 No. Parameter Dimensions and number 1. Tube diameter entry 36mm 2. Tube diameter exit 14mm 3. Inlet nozzle diameter 4mm 4. Cold orifice diameter 5,6,7mm 5. Length of tube 225mm 6. Cone angle, φ 60 7. Conical valve angles ϴ 300,450,600,900 8. No. of entry nozzles 2 ICAER 2013 11 December 2013
  13. 13. Experimental Setup 13 Rotameter Temp. Indicator Compresso r FRL Unit Test Rig Vortex Tube ICAER 2013 11 December 2013
  14. 14. Components 14 Valves of Varying Angles a b c d (a) 30 degree conical Valve (b) 45 degree conical Valve (c) 60 degree conical Valve (d) 90 degree conical Valve Details of the Vortex tube ICAER 2013 11 December 2013
  15. 15. Experimental Data 15 45 Degree valve , 7 mm orifice p Ta Tc Th Mc Ma CMF Ma Kg/s 2 28 28 28 28 23 16 13 5 30 30 30 29 140 190 260 280 170 200 280 300 0.8235 0.9500 0.9286 0.9333 0.0028093 0.0038127 0.0052173 0.0056187 3 4 5 ICAER 2013 11 December 2013
  16. 16. Data Reduction 16  Cooling Effect/ Heating EffectQh c : mc C p Ti Qhh Tc mh C p Th Ti P2 w Compressor Work : P1V1 log e P 1 .    COP = CoolingEffect Comp.Work COP =f(μ,pi, ϴ) ICAER 2013 11 December 2013
  17. 17. Results & Discussion (Effect of pressure) cold end temperature dgrees 17 30 30 25 20 45 15 60 10 5 90 0 2 3 4 5 air supply pressure in (bar) With Increase in pressure the Temperature drop Increases ICAER 2013 11 December 2013
  18. 18. Effect of orifice diameter on COP COP of converging tube 18 0.160 0.140 0.120 0.100 0.080 0.060 0.040 0.020 0.000 5 6 7 2 3 4 air supply pressure in bars 5 COP increases with cold orifice diameter ICAER 2013 11 December 2013
  19. 19. Effect on static & actual temperature drop 19 static and actual temperature drop static vs. actual temperature 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 Static 5 Actual 5 Static 6 Actual 6 Static 7 Actual 7 2 4 supply 3 pressure in bars air 5 Actual temperature drop is less than static temperature drop at all pressures ICAER 2013 11 December 2013
  20. 20. 20 Effect on Adiabatic Effectiveness adiabatic effectiveness of vortex tube adiabatic effectiveness at CMF =0.9 30 25 30 20 45 15 60 10 90 5 0 4 4.5 5 5.5 6 6.5 7 7.5 cold end orifice diameter in mm 8 45 degree conical valve in converging mode of tube is more effective for ICAER 2013 11 December 2013
  21. 21. Theoretical and Actual COP COP of vortex tube 21 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 Theoretical 5 Actual 5 Theoretical 6 Actual 6 Theoretical 7 Actual 7 15 30 45 60 conical valve angles in degrees 75 90 Theoretical COP is greater than Actual COP ICAER 2013 11 December 2013
  22. 22. Effect of area ratio on COP COP of converging tube 22 0.180 0.160 0.140 0.120 0.100 0.080 0.060 0.040 0.020 0.000 0.04 COP at 3 bar pressure 30 45 60 90 0.05 area ratio Ao/ At 0.06 Vortex tube gives good performance at certain area ratio and when d/D=0.5 ICAER 2013 11 December 2013
  23. 23. Conclusion 23 converging type of vortex tube has proved to be promising as far as the optimization of cold mass fraction and lower cold end temperatures  It has satisfactorily produced lower temperature of about 50C  cold mass fractions of the order of 0.9 with COP as high as 0.202.  ICAER 2013 11 December 2013
  24. 24. 24 The adiabatic effectiveness of the tube is on higher side and is 208%.  small deviation of 0.39 is observed in theoretical and actual COP of the tube.  d/D =0.5 is preferred for optimum performance of the tube, the result is in agreement of Nimbalkar (2009)  ICAER 2013 11 December 2013
  25. 25. References [1] G. Ranque, Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air, J. Phys. Radium (Paris) 4 (1933) 112–114. [2] G. Ranque, Method and Apparatus for Obtaining from a Fluid under Pressure Two Outputs of Fluid at Different Temperatures, US Patent 1:952,2 81, 1934. 25 [3] Maxwell Demon, Maxwell demon comes to life, May 1947 [4] M. Hilsch, The use of the expansion of gases in a centrifugal field as cooling process, Rev. Sci. Instrum. 18 (2) (1947) 108–113 [5] P. K. Singh, R.G. Tathgir, D. Gangacharulyu, G. S. Grewal, an Experimental Performance Evaluation of Vortex Tube, IE (I) Journal—MC, Vol.84 ( 2004) 149-153 [6] C.M. GAO, Experimental Study on the Ranque–Hilsch Vortex Tube, PhD Thesis, Technische Universiteit Eindhoven, (2005) [7] M. Arjomandi and Y. Xue, An investigation of the effect of the hot end plugs on the efficiency of the Ranque–Hilsch vortex tube, J. Eng. Sci. Techn ol. JESTEC Vol.2, No.3, (2007) 211–217 [8] K. D. Devade and A. T. Pise, Investigation of Refrigeration Effect Using Short Divergent Vortex Tube, International Journal of Earth sciences and engineering, Vol.5 No.1, (2012) 378-384. [9] O. Aydın, B. Markal, M. Avci., New vortex generator geometry for a counter-flow Ranque-Hilsch vortex tube, Applied Thermal Engineering 30 (20 10) 2505-2511 [10] P. Promvonge and S. Eiamsa-ard, Investigation on the Vortex Thermal Separation in a Vortex Tube Refrigerator, Science Asia 31 (2005) 215-22 3 [11] K. Dincer, S. Baskaya, B.Z. Uysal, I. Ucgul, Experimental investigation of the performance of a Ranque–Hilsch vortex tube with regard to a plug l ocated at the hot outlet, international journal of refrigeration, 32 (2009) 87 – 94 [12] S. Nimbalkar and M. R. Muller, An experimental investigation of the optimum geometry for the cold end orifice of a vortex tube, Appl. Therm. Eng . 29 (2009) 509–514 [13] K. Dincer, A. Avci, S. Baskaya , A. Berber, Experimental investigation and exergy analysis of the Performance of a counterflow Ranque-Hilsch v ortex tube with regard to nozzle cross-section areas, international journal of refrigeration 33 (2010) 954 -962 [14] O. Aydın, B. Markal, M. Avci., New vortex generator geometry for a counter-flow Ranque-Hilsch vortex tube, Applied Thermal Engineering 30 (20 10) 2505-2511. [15] Eiamsa-ard, Experimental investigation of energy separation in a counter-flow Ranque–Hilsch vortex tube with multiple inlet snail entries, Interna tional Communications in Heat and Mass Transfer 37 (2010) 637–643 [16] Y.T. Wu, Y. Ding, Y.B. Ji, C.F. Ma, M.C. Ge, Modification and experimental research on vortex tube, International Journal of Refrigeration 30 (20 07) 1042-1049. ICAER 2013 11 December 2013 [17] Y. Xue and M. Arjomandi, The effect of vortex angle on the efficiency of the Ranque–Hilsch vortex tube, Exp. Therm. Fluid Sci. 33 (2008) 54–57.
  26. 26. 26 ICAER 2013 11 December 2013

×