Successfully reported this slideshow.
Your SlideShare is downloading. ×

Plant-pollination networks and plant invasions

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Loading in …3
×

Check these out next

1 of 169 Ad
Advertisement

More Related Content

Slideshows for you (20)

Advertisement

Similar to Plant-pollination networks and plant invasions (20)

Advertisement

Recently uploaded (20)

Plant-pollination networks and plant invasions

  1. 1. Plant invasions: consequences for plant-pollinator interactions Ignasi Bartomeus Roig • November 2008 • Universitat Autònoma de Barcelona • CREAF •nacho@creaf.uab.es•Advisor: Montserrat Vilà •
  2. 2. Mack et al.(2000)Ecol Applic Globalization Increase transport
  3. 3. Mack et al.(2000)Ecol Applic Globalization Increase transport 21 million flights/day 470 million tones/day World Bank(2002)
  4. 4. Intentional Unintentional Mack et al.(2000)Ecol Applic Globalization Increase transport 21 million flights/day 470 million tones/day World Bank(2002)
  5. 5. Intentional Unintentional Mack et al.(2000)Ecol Applic Globalization Increase transport 21 million flights/day 470 million tones/day World Bank(2002)
  6. 6. Introduction Naturalization Invasion Invasion process:
  7. 7. Introduction Naturalization Invasion Invasion process:
  8. 8. Introduction Naturalization Invasion Invasion process:
  9. 9. Introduction Naturalization Invasion Invasion process:
  10. 10. Introduction Naturalization Invasion Invasive species characteristics Reproduction system Pre-adaptations Invaded ecosystem characteristics Empty niches Lack of natural enemies Perturbations Invasion process:
  11. 11. Introduction Naturalization Invasion Ecological impacts Competition Economic impacts Impacts: Invasion process:
  12. 12. Introduction Naturalization Invasion Ecological impacts Competition Economic impacts Impacts: Invasion process:
  13. 13. Introduction Naturalization Invasion Loss of Biodiversity Ecological impacts Competition Economic impacts Impacts: Invasion process:
  14. 14. Network
  15. 15. Network Pollination: Mutualism Ecological service Endangered
  16. 16. Traveset & Richardson(2006)TrEE
  17. 17. Traveset & Richardson(2006)TrEE
  18. 18. New Interactions Traveset & Richardson(2006)TrEE
  19. 19. New Interactions Mutualistic networks Traveset & Richardson(2006)TrEE
  20. 20. New Interactions Mutualistic networks Traveset & Richardson(2006)TrEE Rosmarinus officinalis, Lavandula stoeachs, Cistus spp...
  21. 21. New Interactions Mutualistic networks Traveset & Richardson(2006)TrEE Rosmarinus officinalis, Lavandula stoeachs, Cistus spp...
  22. 22. Bjerkens et al.(2007)Biol Cons Direct effects Impacts on native plants
  23. 23. Bjerkens et al.(2007)Biol Cons Pollinator sharing Direct effects Impacts on native plants
  24. 24. Bjerkens et al.(2007)Biol Cons Visits to natives Direct effects Impacts on native plants
  25. 25. Bjerkens et al.(2007)Biol Cons Visits to natives Direct effects Impacts on native plants
  26. 26. Bjerkens et al.(2007)Biol Cons Visits to natives Direct effects Impacts on native plants
  27. 27. Bjerkens et al.(2007)Biol Cons Visits to natives Direct effects Impacts on native plants
  28. 28. Bjerkens et al.(2007)Biol Cons Pollen transport Direct effects Impacts on native plants
  29. 29. Direct effects CompetitionFacilitationCompetition No effect Bjerkens et al.(2007)Biol Cons Seed set Impacts on native plants
  30. 30. Direct effects CompetitionFacilitationCompetition No effect Bjerkens et al.(2007)Biol Cons Chittka & Schurkens (2001)Nature Seed set Impacts on native plants Focal Plant studies:
  31. 31. Direct effects CompetitionFacilitationCompetition No effect Bjerkens et al.(2007)Biol Cons Moragues & Traveset (2005)Biol Cons Seed set Impacts on native plants Focal Plant studies:
  32. 32. Direct effects CompetitionFacilitationCompetition No effect Bjerkens et al.(2007)Biol Cons Totland et al.(2006)J Bot Larson et al.(2006)Biol Cons Nilsen et al.(2008)Biol Inv Muñoz & Cavieres (2008)J Ecol et al... Seed set Impacts on native plants Focal Plant studies:
  33. 33. Study species:
  34. 34. South Africa s.XIX Fast clonal growth Hybrid 8-10 cm pollen rich flowers Gardening and soil fixation Carpobrotus aff. acinaciformis Study species:
  35. 35. South Africa s.XIX Fast clonal growth Hybrid 8-10 cm pollen rich flowers Gardening and soil fixation Carpobrotus aff. acinaciformis Opuntia stricta Central America s.XVI 1.5 m high 5 cm pollen rich flowers Ornamental Study species:
  36. 36. South Africa s.XIX Fast clonal growth Hybrid 8-10 cm pollen rich flowers Gardening and soil fixation Carpobrotus aff. acinaciformis Opuntia stricta Central America s.XVI 1.5 m high 5 cm pollen rich flowers Ornamental Impatiens glandulifera Himalayas s.XX 2 m high Annual 4 cm nectar and pollen rich flowers Study species:
  37. 37. Breeding system & pollen limitation Effects on plant-pollinators networks Invasive pollen transfer to native stigmas! Combined effects of invasion & landscape structure Objectives:
  38. 38. Breeding system and pollen limitation I C Bartomeus I, Vilà M(Submited)
  39. 39. Breeding system and pollen limitation I C Asexual reproduction Self compatible Generalist Baker(1967)Evolution
  40. 40. Breeding system and pollen limitation New Interactions New Interactions Parcker and Haubenask (2002)Oecologia I C Asexual reproduction Self compatible Generalist Baker(1967)Evolution
  41. 41. Study sites: Breeding system and pollen limitation Opuntia stricta Carpobrotus aff. acinaciformis Suehs et al.(2004)Heredity I C
  42. 42. Study sites: Breeding system and pollen limitation Opuntia stricta Carpobrotus aff. acinaciformis Suehs et al.(2004)Heredity I C
  43. 43. Study sites: Breeding system and pollen limitation Opuntia stricta Carpobrotus aff. acinaciformis Suehs et al.(2004)Heredity I C
  44. 44. Kearns & Inouye(1993) 5 Treatments: Forced out-crossing Open pollination Anemogamy Facilitated self-pollination Spontaneous self-pollination 40 flowers treatment x 3 site Breeding system and pollen limitation I C
  45. 45. Breeding system and pollen limitation I C Site 1 Site 2 Site 3 Forced Out-crossing
  46. 46. Breeding system and pollen limitation I C Site 1 Site 2 Site 3 Forced Out-crossing
  47. 47. Breeding system and pollen limitation I C Site 1 Site 2 Site 3 Forced Out-crossing
  48. 48. Breeding system and pollen limitation I C Site 1 Site 2 Site 3 Forced Out-crossing
  49. 49. Breeding system and pollen limitation I C Site 1 Site 2 Site 3 Forced Out-crossing
  50. 50. Breeding system and pollen limitation I C Site 1 Site 2 Site 3 Forced Out-crossing
  51. 51. Breeding system and pollen limitation I C Site 1 Site 2 Site 3 Forced Out-crossing
  52. 52. Breeding system and pollen limitation I C Site 1 Site 2 Site 3 Forced Out-crossing
  53. 53. Breeding system and pollen limitation Low self-compatibility They need pollinators I C
  54. 54. Breeding system and pollen limitation Low self-compatibility They need pollinators Slightly pollen limited Hybrid Coleoptera I C
  55. 55. Breeding system and pollen limitation Low self-compatibility They need pollinators Slightly pollen limited Hybrid Coleoptera I C Efficient pollinators Xilocopa violacea & Apis mellifera
  56. 56. Breeding system and pollen limitation Low self-compatibility They need pollinators Slightly pollen limited Hybrid Coleoptera I C Efficient pollinators Xilocopa violacea & Apis mellifera
  57. 57. Effects on plant-pollination networks I C Bartomeus I, Vilà M & Santamaria L(2008)Oecologia
  58. 58. Effects on plant-pollination networks I C
  59. 59. Effects on plant-pollination networks I C
  60. 60. Effects on plant-pollination networks I C
  61. 61. Effects on plant-pollination networks Competition with natives at a community level Pollinator sharing Decrease the number of visits to natives Changes in the community structure Nestedness Centrality Strength I C
  62. 62. Effects on plant-pollination networks Opuntia stricta Carpobrotus aff. acinaciformis I C
  63. 63. Effects on plant-pollination networks ini x3 50x50 I C
  64. 64. Effects on plant-pollination networks ini ini x3 x3 50x50 I C
  65. 65. Effects on plant-pollination networks ini ini x3 x3 50x50 I C
  66. 66. Effects on plant-pollination networks ini ini x3 x3 We sample: All plant species Along all the season 50x50 I C
  67. 67. Effects on plant-pollination networks Pollinator species 53 species to natives 23 species to Carpobrotus (42%) I C
  68. 68. Effects on plant-pollination networks Pollinator species 53 species to natives 23 species to Carpobrotus (42%) 7 Visits natives Visits 27 Visits Carpobrotus I C
  69. 69. Effects on plant-pollination networks >70% natives increase nº visits in invaded plots (GLMM P<0.02) Pollinator species 53 species to natives 23 species to Carpobrotus (42%) 7 Visits natives Visits 27 Visits Carpobrotus I C
  70. 70. Effects on plant-pollination networks Pollinator species 54 species to natives 17 species to Opuntia (31%) I C
  71. 71. Effects on plant-pollination networks 19% visits Xilocopa violacea Pollinator species 54 species to natives 17 species to Opuntia (31%) I C
  72. 72. Effects on plant-pollination networks 19% visits Xilocopa violacea Pollinator species 54 species to natives 17 species to Opuntia (31%) 6 Visits natives Visits 44 Visits Opuntia I C
  73. 73. Effects on plant-pollination networks >60% natives decrease nº visits in invaded plots (GLMM P=0.04) 19% visits Xilocopa violacea Pollinator species 54 species to natives 17 species to Opuntia (31%) 6 Visits natives Visits 44 Visits Opuntia I C
  74. 74. Effects on plant-pollination networks I C
  75. 75. Effects on plant-pollination networks I C
  76. 76. Effects on plant-pollination networks I C
  77. 77. Effects on plant-pollination networks I C
  78. 78. Effects on plant-pollination networks I C
  79. 79. Effects on plant-pollination networks Carpobrotus aff. acinaciformis Plants Pollinators I C
  80. 80. Effects on plant-pollination networks Nestedness Bascompte et al.(2003)PNAS I C
  81. 81. Effects on plant-pollination networks Nestedness Bascompte et al.(2003)PNAS I C
  82. 82. Effects on plant-pollination networks Nestedness Bascompte et al.(2003)PNAS Isocline I C
  83. 83. Effects on plant-pollination networks Nestedness Bascompte et al.(2003)PNAS N= 0.83 Isocline I C
  84. 84. Effects on plant-pollination networks Nestedness Bascompte et al.(2003)PNAS N= 0.83 Isocline I C
  85. 85. Effects on plant-pollination networks Nestedness Bascompte et al.(2003)PNAS N= 0.83 Isocline I C
  86. 86. Effects on plant-pollination networks Nestedness lián and Olesen (2003). PNAS 100: 9383-9387 =1 N=0.55 N=0.742, P<0.01 Olesen & Elberling Nestedness. Nestedness ano, Melián and Olesen (2003). PNAS 100: 9383-9387 N=1 N=0.55 N=0.742, P<0.01 Olesen & Elberling 2. Nestedness pte, Jordano, Melián and Olesen (2003). PNAS 100: 9383-9387 N=1 N=0.55 N=0.742, P<0.01 Olesen & Elberling 2. Nestedness N=1 N=0.55 N=0.742, P<0.01 Olesen & Elberling Null model 2. Nestedness N=1 N=0.55 N=0.742, P<0.01 Olesen & Elberling I C
  87. 87. Effects on plant-pollination networks Nestedness lián and Olesen (2003). PNAS 100: 9383-9387 =1 N=0.55 N=0.742, P<0.01 Olesen & Elberling Nestedness 50% more nested than by random No differences in Nestedness for Carpobrotus Invaded communities more nested than uninvaded for Opuntia. . Nestedness ano, Melián and Olesen (2003). PNAS 100: 9383-9387 N=1 N=0.55 N=0.742, P<0.01 Olesen & Elberling 2. Nestedness pte, Jordano, Melián and Olesen (2003). PNAS 100: 9383-9387 N=1 N=0.55 N=0.742, P<0.01 Olesen & Elberling 2. Nestedness N=1 N=0.55 N=0.742, P<0.01 Olesen & Elberling Null model 2. Nestedness N=1 N=0.55 N=0.742, P<0.01 Olesen & Elberling I C
  88. 88. Effects on plant-pollination networks Nestedness lián and Olesen (2003). PNAS 100: 9383-9387 =1 N=0.55 N=0.742, P<0.01 Olesen & Elberling Nestedness 50% more nested than by random No differences in Nestedness for Carpobrotus Invaded communities more nested than uninvaded for Opuntia. . Nestedness ano, Melián and Olesen (2003). PNAS 100: 9383-9387 N=1 N=0.55 N=0.742, P<0.01 Olesen & Elberling 2. Nestedness pte, Jordano, Melián and Olesen (2003). PNAS 100: 9383-9387 N=1 N=0.55 N=0.742, P<0.01 Olesen & Elberling 2. Nestedness N=1 N=0.55 N=0.742, P<0.01 Olesen & Elberling Null model 2. Nestedness N=1 N=0.55 N=0.742, P<0.01 Olesen & Elberling I C
  89. 89. Centrality: Degree & Betweenness Pajek Softweare
  90. 90. Centrality: Degree & Betweenness High Degree-Centrality Pajek Softweare
  91. 91. Centrality: Degree & Betweenness High Betweenness-Centrality Pajek Softweare
  92. 92. Centrality: Degree & Betweenness High Betweenness-Centrality Pajek Softweare
  93. 93. Centrality: Degree & Betweenness High Betweenness-Centrality DCCarpobrotus > DCnatives (0.3) (0.09) DCOpuntia > DCnatives (0.38) (0.08) BCCarpobrotus > BCnatives (0.33) (0.08) BCOpuntia > BCnatives (0.46) (0.06) Pajek Softweare
  94. 94. Effects on plant-pollination networks Opuntia stricta Plants Pollinators j i I C Bascompte et al.(2006)Science
  95. 95. Effects on plant-pollination networks Opuntia stricta Plants Pollinators j i dji = nºVji/nº VjDependence of j on i: I C Bascompte et al.(2006)Science
  96. 96. Effects on plant-pollination networks Opuntia stricta Plants Pollinators j i dji = nºVji/nº VjDependence of j on i: Si = ∑ djiStrength of i: I C Bascompte et al.(2006)Science
  97. 97. Effects on plant-pollination networks Opuntia stricta Plants Pollinators j i SCarpobrotus > Snatives (6.5) (2.2) SOpuntia > Snatives (8.1) (2.1) Strength dji = nºVji/nº VjDependence of j on i: Si = ∑ djiStrength of i: I C Bascompte et al.(2006)Science
  98. 98. Effects on plant-pollination networks Both invaders are generalists: Nº Pollinators Nº of visits Position in the network I C
  99. 99. Effects on plant-pollination networks Different effects on plant comunity: Increase visits in Carpobrotus plots Decrease visits in Opuntia plots I C
  100. 100. Invasive pollen transfer to native stigmas I C Bartomeus I, Bosch J & Vilà M (2008) Annals of Botany
  101. 101. CompetitionFacilitationCompetition No effect Invasive pollen transfer to native stigmas I C
  102. 102. CompetitionFacilitationCompetition No effect Invasive pollen transfer to native stigmas I C
  103. 103. Invasive pollen transfer to native stigmas Shared pollinators I C
  104. 104. Invasive pollen transfer to native stigmas Pollen loads in pollinator bodies Conspecific pollen Invasive > heterospecific native pollen Shared pollinators I C
  105. 105. Invasive pollen transfer to native stigmas Pollen loads in pollinator bodies Conspecific pollen Invasive > heterospecific native pollen Pollen deposition in native plant stigmas Proportion of invasive pollen Shared pollinators I C
  106. 106. Effects on plant-pollination networks Carpobrotus aff. acinaciformis I C
  107. 107. Carpobrotus 39% plant cover 36% of visits Fuchsine stained gelatine Invasive pollen transfer to native stigmas I C
  108. 108. Carpobrotus 39% plant cover 36% of visits Fuchsine stained gelatine 5 Plant species 49% plant cover 51% of visits 10 pollinators (5 bees, 5 beetles) 76% of visits Invasive pollen transfer to native stigmas I C
  109. 109. Carpobrotus 39% plant cover 36% of visits Fuchsine stained gelatine 30 stigmas x species 15 pollinators x interaction 5 Plant species 49% plant cover 51% of visits 10 pollinators (5 bees, 5 beetles) 76% of visits Invasive pollen transfer to native stigmas I C
  110. 110. Oxythyrea funestaCistus albidus Invasive pollen transfer to native stigmas I C
  111. 111. Oxythyrea funestaCistus albidus Invasive pollen transfer to native stigmas Andrena sp.Cistus salvifolius I C
  112. 112. Oxythyrea funestaCistus albidus Invasive pollen transfer to native stigmas Andrena sp.Cistus salvifolius Cistus monspeliensis I C
  113. 113. Oxythyrea funestaCistus albidus Invasive pollen transfer to native stigmas Andrena sp.Cistus salvifolius Cistus monspeliensis Lavandula stoechas Eucera sp I C
  114. 114. Oxythyrea funestaCistus albidus Invasive pollen transfer to native stigmas Andrena sp.Cistus salvifolius Cistus monspeliensis Lavandula stoechas Eucera sp I C Sonchus tenerrimus Criptocephalus sp
  115. 115. Invasive pollen transfer to native stigmas Apis melifera Bombus terrestris Andrena sp. Anthidium sticticum Halictus gemmeus Oxythyrea funesta Cryptocephalus sp Mordella sp Oedemera spp. Psilothrix sp I C
  116. 116. Invasive pollen transfer to native stigmas Apis melifera Bombus terrestris Andrena sp. Anthidium sticticum Halictus gemmeus Oxythyrea funesta Cryptocephalus sp Mordella sp Oedemera spp. Psilothrix sp Cistus Lavandula Carpobrotus I C
  117. 117. Invasive pollen transfer to native stigmas Apis melifera Bombus terrestris Andrena sp. Anthidium sticticum Halictus gemmeus Oxythyrea funesta Cryptocephalus sp Mordella sp Oedemera spp. Psilothrix sp We counted 139 063 pollen grains Average: 3 pollen species per individual Cistus Lavandula Carpobrotus I C
  118. 118. Invasive pollen transfer to native stigmas Apis melifera Bombus terrestris Andrena sp. Anthidium sticticum Halictus gemmeus Oxythyrea funesta Cryptocephalus sp Mordella sp Oedemera spp. Psilothrix sp We counted 139 063 pollen grains Average: 3 pollen species per individual Cistus Lavandula Carpobrotus 73% carried invasive pollen I C
  119. 119. Invasive pollen transfer to native stigmas Apis melifera Bombus terrestris Andrena sp. Anthidium sticticum Halictus gemmeus Oxythyrea funesta Cryptocephalus sp Mordella sp Oedemera spp. Psilothrix sp We counted 139 063 pollen grains Average: 3 pollen species per individual Cistus Lavandula Carpobrotus 73% carried invasive pollen 23% of pollen was invasive I C
  120. 120. Main Results Invasive pollen transfer to native stigmas I C
  121. 121. Main Results Invasive pollen transfer to native stigmas I C
  122. 122. Main Results Invasive pollen transfer to native stigmas I C
  123. 123. Main Results Invasive pollen transfer to native stigmas I C
  124. 124. 2 pollinators (bees): Dominant heterospecific > invasive (p < 0.001) 6 pollinators: Dominant heterospecific ∼ invasive 2 pollinators (beetles): Invasive > dominant heterospecific (p < 0.006) Invasive vs. heterospecific native pollen Invasive pollen transfer to native stigmas I C
  125. 125. 2 pollinators (bees): Dominant heterospecific > invasive (p < 0.001) 6 pollinators: Dominant heterospecific ∼ invasive 2 pollinators (beetles): Invasive > dominant heterospecific (p < 0.006) Invasive vs. heterospecific native pollen Invasive pollen transfer to native stigmas I C
  126. 126. All stigmas were covered by pollen Average: 2 pollen species per stigma Invasive pollen transfer to native stigmas 36% invasive pollen stigmas I C
  127. 127. All stigmas were covered by pollen Average: 2 pollen species per stigma Invasive < heterospecific < conspecific (χ2, p < 0.0001) Invasive pollen transfer to native stigmas 36% invasive pollen stigmas I C
  128. 128. 1) pollinator species sharing Invasive pollen transfer to native stigmas I C
  129. 129. 1) pollinator species sharing 2) effective pollen transfer Invasive pollen transfer to native stigmas I C
  130. 130. 1) pollinator species sharing 3) low invasive pollen loads 2) effective pollen transfer Invasive pollen transfer to native stigmas I C
  131. 131. 1) pollinator species sharing 4) lower invasive pollen deposition 3) low invasive pollen loads 2) effective pollen transfer Invasive pollen transfer to native stigmas I C
  132. 132. 1) pollinator species sharing 4) lower invasive pollen deposition 3) low invasive pollen loads 2) effective pollen transfer Invasive pollen transfer to native stigmas ...Floral constancy, morphology & temporal presentation I C
  133. 133. Combined effects of invasion & landscape structure I C Bartomeus I, Vilà M & Setffan-Dewenter I(In preparation)
  134. 134. Combined effects of invasion & landscape structure I C
  135. 135. Combined effects of invasion & landscape structure I C
  136. 136. Combined effects of invasion & landscape structure Invasion I C
  137. 137. Landscape context Combined effects of invasion & landscape structure Invasion I C
  138. 138. Combined effects of invasion & landscape structure I C Steffan-Dewenter et al.(2002)Ecology
  139. 139. Combined effects of invasion & landscape structure I C Steffan-Dewenter et al.(2002)Ecology
  140. 140. Combined effects of invasion & landscape structure I C Steffan-Dewenter et al.(2002)Ecology
  141. 141. Combined effects of invasion & landscape structure I C Steffan-Dewenter et al.(2002)Ecology
  142. 142. Combined effects of invasion & landscape structure I C Westphal et al.(2003)Ecol Lett
  143. 143. Combined effects of invasion & landscape structure I C Westphal et al.(2003)Ecol Lett
  144. 144. Combined effects of invasion & landscape structure I C Westphal et al.(2003)Ecol Lett
  145. 145. X 14 sites in a landscape gradient Combined effects of invasion & landscape structure 17% of natural cover71% of natural cover Grassland Agricultural fields Human activity area Landscape sites at 3000 m radii. Forest I C
  146. 146. X 14 sites in a landscape gradient Combined effects of invasion & landscape structure 17% of natural cover71% of natural cover Grassland Agricultural fields Human activity area Landscape sites at 3000 m radii. Forest I C 100m 100m Before Impatiens flowering period Raphanus sativus pots Impatiens stands
  147. 147. X 14 sites in a landscape gradient 100m 100m During Impatiens flowering peak Combined effects of invasion & landscape structure 17% of natural cover71% of natural cover Grassland Agricultural fields Human activity area Landscape sites at 3000 m radii. Forest I C 100m 100m Before Impatiens flowering period Raphanus sativus pots Impatiens stands
  148. 148. Log (proportion of agricultural land cover) Log(numberofbumblebeesvisits) 0 1 2 21 1.5 Combined effects of invasion & landscape structure Before Impatiens flowering During Impatiens flowering R2= 0.25; p< 0.003 I C
  149. 149. Log (proportion of agricultural land cover) Log(numberofbumblebeesvisits) 0 1 2 21 1.5 Combined effects of invasion & landscape structure Before Impatiens flowering During Impatiens flowering R2= 0.25; p< 0.003 I C
  150. 150. a a b c 0 5 10 15 20 25 30 35 40 Before / Non-invaded Before / Invaded During / Non-invaded During / Invaded visits to natives Numberofvisits tothecommunity b visits to invader Combined effects of invasion & landscape structure I C
  151. 151. a a b c 0 5 10 15 20 25 30 35 40 Before / Non-invaded Before / Invaded During / Non-invaded During / Invaded visits to natives Numberofvisits tothecommunity b visits to invader Combined effects of invasion & landscape structure I C
  152. 152. a a b c 0 5 10 15 20 25 30 35 40 Before / Non-invaded Before / Invaded During / Non-invaded During / Invaded visits to natives Numberofvisits tothecommunity b visits to invader Combined effects of invasion & landscape structure I C
  153. 153. 0 5 10 15 20 25 30 35 40 45 50 % Fruit set Nº Visits Raphanus pots Combined effects of invasion & landscape structure Before / Non-invaded Before / Invaded During / Non-invaded During / Invaded I C NºVisits/%Fruitset
  154. 154. 0 5 10 15 20 25 30 35 40 45 50 % Fruit set Nº Visits Raphanus pots Combined effects of invasion & landscape structure Before / Non-invaded Before / Invaded During / Non-invaded During / Invaded I C NºVisits/%Fruitset
  155. 155. Combined effects of invasion & landscape structure I C
  156. 156. Combined effects of invasion & landscape structure 1) Social bees increase in agricultural areas before the invasive plant flowering 2) No effect on wild bees I C
  157. 157. Combined effects of invasion & landscape structure 4) Native plants do not decrease visitation, nor seed set 3) Impatiens attracts mainly bumblebees 1) Social bees increase in agricultural areas before the invasive plant flowering 2) No effect on wild bees I C
  158. 158. Combined effects of invasion & landscape structure Impatiens mask off the landscape effect 4) Native plants do not decrease visitation, nor seed set 3) Impatiens attracts mainly bumblebees 1) Social bees increase in agricultural areas before the invasive plant flowering 2) No effect on wild bees I C
  159. 159. CompetitionFacilitation No effect Conclusions
  160. 160. CompetitionFacilitation No effect Carpobrotus Conclusions
  161. 161. CompetitionFacilitation No effect Impatiens Conclusions
  162. 162. CompetitionFacilitation No effect Opuntia Conclusions
  163. 163. CompetitionFacilitation No effect mask off landscape contextImpatiens Conclusions
  164. 164. CompetitionFacilitation No effect mask off landscape contextImpatiens Conclusions
  165. 165. CompetitionFacilitation No effect mask off landscape contextImpatiens Conclusions
  166. 166. Take home message Plant-pollinator networks are complex & the invasion outcome is difficult to predict. However, invasive plants cause significant changes on the networks.
  167. 167. Thank you for your attention And special Thanks to collaborators: Montse Vilà, Jordi Bosch, Ingolf Steffan-Dewenter; Lab colleges: Jara Andreu, Nuria Gasso, Salva Blanch, Belén Sanchez and CREAF friends.

×