Pushing the edge of the contemporary cognitive (CHC) theory:  New directions for psychologists<br />Kevin S. McGrew, PhD<b...
Or…..what an inquisitive applied intelligence scholar/psychometrician constructed/discovered from playing almost a decade ...
“Intelligent” testing and interpretation<br />requires…knowing thy instruments<br />Neuropsych. interpretation<br />Error ...
“ If you give a monkey a stradivarius violin and you get bad music……..you don’t blame the violin”<br />McGrew (circa 1986)...
Three things (or major steps) completed that have resulted in the intelligence model(s) to be presented today<br />
Things 1 and 2:<br />Will be covered quickly to provide context and background for primary content of today – Thing 3<br />
Psychometric vs. neuropsychological conception/model assessment gap<br />“It is notable that there is a gap between neurop...
Psychometric vs. neuropsychological assessment gap: Select reasons why (Hoelzle, 2008)<br /><ul><li> Singular concept of i...
 NP assessment has been traditionally non-theoretical---popular models of intelligence and cognitive abilities have been d...
 NP measures traditionally selected on ability to differentiate between neurological and normal conditions---psychometric ...
Horizontalmultiple regression (aptitude/functional/pragmatic) model<br />Criterion DVs<br />Gf<br />Gc<br />Glr<br />G..<b...
My primary goal<br />Present a different (yet compatible value-added) psychometric theory of intelligence perspective for ...
Importance Of Classification <br />Taxonomies In All Sciences<br />Classification is arguably one of the most central and ...
?<br />Reliable variance<br />    (reliability)<br />Error variance<br />-individual/situational variables (e.g., distract...
The Cattell-Horn-Carroll  (CHC) theory of cognitive<br />abilities is the contemporary consensus<br />psychometric model o...
g<br />T2<br />T3<br />T4<br />T5<br />T6<br />T7<br />T8<br />T9<br />T1<br />T12<br />T10<br />T11<br />T2<br />T3<br />...
CHC theory has entered the mainstream neuropsychological assessment literature<br />
A landmark event in understanding the structure of human cognitive abilities - 1993<br />
THE SCOPE OF CARROLL’S FACTOR ANALYTIC REVIEW<br />Reviewed factor analytic research of the past 50-60 years<br />Includes...
The verdict is unanimous re: the importance of Carroll’s (1993) work<br />Richard Snow (1993):<br /> “John Carroll has don...
Contemporary psychometric research has converged on <br />the Cattell-Horn-Carroll (CHC) theory of cognitive abilities as ...
T2<br />T3<br />T4<br />T5<br />T6<br />T7<br />T8<br />T9<br />T1<br />T12<br />T10<br />T11<br />PMA1<br />PMA2<br />PMA...
T2<br />T3<br />T4<br />T5<br />T6<br />T7<br />T8<br />T9<br />T1<br />T12<br />T10<br />T11<br />PMA1<br />PMA2<br />PMA...
T2<br />T3<br />T4<br />T5<br />T6<br />T7<br />T8<br />T9<br />T1<br />T12<br />T10<br />T11<br />PMA1<br />PMA2<br />PMA...
Importance Of Classification <br />Taxonomies In All Sciences<br />Classification is arguably one of the most central and ...
Gf<br />Broad<br />RG<br />RP<br />Narrow<br />I<br />RQ<br />RE<br />CHC theory classifies abilities according to three l...
...most disciplines have a common set of terms and definitions (i.e., a standard nomenclature) that facilitates communicat...
g<br />Gv<br />Gf<br />Glr<br />Gs<br />Gsm<br />Gc<br />Ga<br />Reliable variance<br />    (reliability)<br />Error varia...
This is where the field of psychometric intellectual <br />assessment is at..and a bandwagon has formed<br />g<br />Gf<br ...
Published WJ III CHC model (McGrew & Woodcock, 2001<br />CFA analysis of 50+ cognitive and achievement tests<br />
Starting point<br />Ages 6-adult CFA Broad CHC Model in WJ III Technical Manual<br />(McGrew & Woodcock, 2001)<br />g<br /...
Deconstruction:  The validated/published WJ III CHC structure was “torn down”<br />Psychologists need a healthy degree of ...
Reconstruction: New structural models specified based on insights from large variety of statistical analysis of the WJ III...
Stage (Thing 2) approach<br />Theoretical considerations (Berlin BIS model; dual-processing cognitive models; etc.) also s...
Variety of Exploratory Data Analyses with Variety of Datasets<br />Data Sets<br /><ul><li>WJ III norm data
WJ III+ other batteries </li></ul>(WISC-R; WAIS-III/WMS-III/KAIT)<br /><ul><li>WAIS-IV subtest correlations</li></ul>Metho...
Multidimensional scaling analysis (MDS) – 2D and 3D
Standard and Carroll EFA+CFA exploratory factor analysis
Model-generation CFA (SEM)
CHC cognitive causal SEM models</li></li></ul><li>Cluster analysis of WJ III and WJ III + other batteries (joint analysis)...
Cluster Analysis<br />Cluster analysis is an set of exploratory (structure discovering) data analysis tools for solving cl...
Cluster Analysis<br />The strength of cluster analysis (discovering structure in data with more relaxed statistical assump...
AS<br />CF<br />SA<br />UD<br />Gf (language-based)<br />AP<br />Clusters beyond this point not easily interpretable – see...
Cluster analysis (Ward method) for all WJ3 tests across all ages       (K. McGrew  12-7-03)<br />VISCLO <br />MV<br />Gv (...
WAIS-IV test Cluster Tree (Wards method) <br />of WAIS-IV subtest intercorrelations<br />Verbal know &  comp (Gc) <br />IN...
PS<br />PCSS<br />Gv<br />BLKROTWR<br />SR<br />BDSS<br />SR/VZ<br />OS<br />SPAREL<br />CONFRM<br />UNDDIR<br />RQ<br />T...
WJR Visual Matching<br />P (Gs)<br />WJR Cross Out<br />RG<br />WJR Analysis-Synthesis<br />Gf<br />KAIT Logical Steps<br ...
Late Career Carroll-EFA+CFA Method (e.g., Carroll, 2003) of WJ III<br />
Traditional EFA of WJ III at <br />various age levels<br />
CHC CFA (SEM) of WJ III and WJ III + other batteries (joint analysis)<br />
Gregg/Hoy College Sample-WJ III + WAIS-III + WMS-III<br />(LD/Non-LD; n=200)<br />(McGrew et al., 2001)<br />© Institute f...
© Institute for Applied Psychometrics, llc  02-05-02<br />
SEM Causal Information Processing Models of WJ III<br />
Note:  Ovals represent<br />latent factors.  Rectangles  represent manifest measures (tests).  Single-headed arrows to tes...
Guttman’s Radex Theory<br />Ability tests can be classified by:<br /><ul><li> Degree of cognitive complexity
 Differences in kind of content
 Differences in type of processes</li></ul>UsesMDS (multidimensional scaling)<br />
Example of MDS (Radex Model) <br />The closer a test is to the center of the figure, the more it is related to the underly...
MDS (Guttman Radex model) of WAIS-IV subtest intercorrelations<br />3<br />Short-term memory /working memory (Gsm)<br />1<...
MDS (Guttman Radex model) of WAIS-IV subtest intercorrelations<br />It is a common practice in MDS analysis to visually pa...
<ul><li>Thinking abilities
Process-dominant “level” abilities
Visual-spatial/figural (low linguistic) stimuli (Gv,Gf,Glr)
Controlled  cognitive processing
Acquired knowledge abilities
Product -dominant “level” abilities
Language (aud-linquistic) and symbolic stimuli (Ga,Gc,Grw,Gq)
Controlled  cognitive processing</li></ul>2<br />WJ III Radex Model<br />IW<br />1<br />Broad CHC factor <br />ability fon...
Gv<br />2<br />PL<br />BR<br />PR<br />More <br />visual-spatial <br />& figural<br />Gf<br />SR<br />DIM(3)<br />VC<br />...
“Intelligent” testing and interpretation<br />requires…knowing thy instruments<br />Neuropsych. interpretation<br />Error ...
Food for thought:  Are the MDS quadrants or partitions reflecting content “facets” or a combination of content“facets and ...
BIS:  Berlin Model of <br />Intelligence Structure<br />Gs<br />Gsm + Glr (level abilities) <br />Carroll’s Gy<br />Glr(fl...
Unveiling of preliminary new models in WJ III norm data<br />
Alternative Model 1<br />g<br />.39<br />Gs<br />(Cognitive speed)<br />.82<br />.88<br />.71<br />.87<br />.86<br />.79<b...
Alternative Model 2<br />.86<br />.99<br />.93<br />g<br />.36<br />1.0<br />Cognitive efficiency<br />(More automatic & e...
Close inspection of the evidence suggests that generic dual-system theory is currently oversimplified andmisleading<br />W...
Alternative Model 2b<br />.93<br />.99<br />1.0<br />.86<br />g<br />.36<br />1.0<br />Type I cognitive processing<br />(C...
Alternative Model 3<br />.95<br />.99<br />.94<br />.21<br />g<br />Auditory temporal (serial) Proc.<br />Visual/figural (...
Alternative Model 3b<br />1.0<br />.94<br />.21<br />Cognitive operations<br />(process/operations/<br />analytic/rule-bas...
Pushing the edge of the envelope of CHC theory and the WJ III measurement model:  Part IIThe first-order measurement model...
Glr and Gsm measurement models were similar to<br />those originally reported by McGrew & Woodcock (2001)<br />
See next slide for other<br />indicators<br />Vis. Clos.  (.41)<br />Blk. Rot.   (.52)<br />Spat. Rel. (.66)<br />Pic. Rec...
Alternative Models:  WJ III Measurement model for possible new Gf factor structure<br />Calculation (.75)<br />Gq<br />.34...
Iteration 1:<br />CHC-based<br />Intelligence model of WJ III battery<br />Kevin McGrew<br />8-18-2010<br />See handouts f...
Gf (RQ)<br />.66<br />Gf<br />.99<br />Gf *<br />Hmmmm…???<br />
It is time to look at some non-CHC/Gf-Gc research on reasoning (Gf):  Alternative lenses<br />
The distinction between inductive and deductive reasoning (i.e., CHC/Gf-Gc Carroll-type model) may be  outdated (Wilhelm, ...
Whilhelm tested Gf model’s as per CHC (I, RQ, RG) and BIS (verbal, quant, figural) structures, and various model interacti...
CFA using dual indicators (split-half—odd/even item sets) for each test:<br />Conclusion:  WJ III RG, I, RQ tests are high...
WJ III CHC Gf model<br />Fit for this and prior model (prior slide) more-or-less equivalent<br />
Lets add in more CHC domain indicators<br />
f8<br />r12<br />2<br />8<br />.<br />PICVOCER<br />.<br />7<br />PicVoc<br />4<br />r13<br />4<br />f1<br />PICVOCOR<br /...
Important Reminder:  All statistical methods, such<br />as factor analysis (EFA or CFA) have limitations and constraints.<...
Additional support  for differentiation of  Gf by type of content or stimulus features<br />3<br />Note which tests are ne...
 Under. Directions.</li></ul>#/quant.<br />Lang (aud-verbal)<br />1<br />Calc<br />ApPrb<br />AcdKn<br />NumMat<br />PicVo...
Thing 3 – attempt to integrate Thing 1 and Thing 2 with neuropsychological<br />assessment models<br />
The First Commandment of Neuropsychological Assessment<br />"If one writes a book on neuropsychological assessment, thou s...
Lets look at the pieces one by one – blow them up<br />
Arm-chair factor analysis of neuropsych. assessment domains  [and CHC construct mapping] (K. McGrew; 8-18-10) [I of 3]<br ...
Arm-chair factor analysis of neuropsych. assessment domains  [and CHC construct mapping] (K. McGrew; 8-18-10) [I of 3]<br ...
Arm-chair factor analysis of neuropsych. assessment domains  [and CHC construct mapping] (K. McGrew; 8-18-10) [I of 3]<br ...
Hypothesized (“working”) CHC-based intelligence model (iteration 2)<br />Kevin McGrew (8-26-2010)<br />
Mapping of current CHC domains with hypothesized new CHC-based intelligence model<br />Kevin McGrew<br />8-18-2010<br />Le...
Empirical examples of Gkn domains<br />From Carroll (1993)<br />
Empirical examples of Gkn domains<br />Ackerman et al. research group<br />
Gp and Gps across domains<br />Motor functions (including motor speed) - Expressive across domains?<br />
  <br />. <br />The somatosensory system<br />The cortical homunculus was discovered by Wilder Penfield<br />
Olfactory abilities/functioning (Go)<br />
Olfactory abilities/functioning (Go):  Possible<br />sub-abilities mentioned in the literature<br /><ul><li> Olfactory mem...
 Odor-evoked memories
 Episodic odor memory
 Olfactory store in working memory
 Olfactory sensitivity (OS) /detection
 Odor specific abilities (O1, O2, O3, O4)
 Odor identification/recognition/detection</li></ul>     /discrimination<br /><ul><li> Olfactory thresholds (and reaction ...
 Olfactory acuity
 Semantic odor networks/odor naming
 Olfactory imagery
Upcoming SlideShare
Loading in …5
×

Pushing the edge of the contemporary cognitive (CHC) theory: New directions for psychologists

3,981 views

Published on

This is the current version of my previous "Beyond CHC theory" module. It presents my current thinking [based on extensive exploratory and confirmatory analysis of multiple data sets (esp. the WJ III norm data and WJ III joint cross-battery data sets) plus the integration of contemporary cognitive, neurocognitive, intelligence and neuropsychological research] re: potential future evolutions of the Cattell-Horn-Carroll (CHC) model of human cognitive abilities. This current presentation was last presented at the CNN (neuropsych) conference the first week of October, 2010, in Fremantle Australia

1 Comment
3 Likes
Statistics
Notes
No Downloads
Views
Total views
3,981
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
161
Comments
1
Likes
3
Embeds 0
No embeds

No notes for slide

Pushing the edge of the contemporary cognitive (CHC) theory: New directions for psychologists

  1. 1. Pushing the edge of the contemporary cognitive (CHC) theory: New directions for psychologists<br />Kevin S. McGrew, PhD<br />Woodcock-Muñoz Foundation<br />16th Annual APS College of Clinical Neuropsychologists Conference<br />From East to West: New directions in Neuropsychology<br />30 September - 2 October 2010<br />Notre Dame University, Fremantle, Western Australia<br />
  2. 2. Or…..what an inquisitive applied intelligence scholar/psychometrician constructed/discovered from playing almost a decade in his data, literature, and theoretical sandbox<br />
  3. 3. “Intelligent” testing and interpretation<br />requires…knowing thy instruments<br />Neuropsych. interpretation<br />Error variance (reliability)<br />External criterion relevance<br />Uniqueness (specificity)<br />g loading<br />Degree of cognitive complexity<br />CHC Ability factor classifications<br />Degree of cultural loading<br />Degree of linguistic demand<br />Metric scale<br />Information processing & stimulus/response characteristics<br />Ability domain cohesion<br />
  4. 4. “ If you give a monkey a stradivarius violin and you get bad music……..you don’t blame the violin”<br />McGrew (circa 1986)<br />
  5. 5. Three things (or major steps) completed that have resulted in the intelligence model(s) to be presented today<br />
  6. 6. Things 1 and 2:<br />Will be covered quickly to provide context and background for primary content of today – Thing 3<br />
  7. 7. Psychometric vs. neuropsychological conception/model assessment gap<br />“It is notable that there is a gap between neuropsychological measures and evolving conceptualizations of intelligence. That is, for as seemingly related as the instruments and concepts are, they have strikingly different historical backgrounds.”<br />(Hoelzle, 2008)<br />
  8. 8. Psychometric vs. neuropsychological assessment gap: Select reasons why (Hoelzle, 2008)<br /><ul><li> Singular concept of intelligence (g) has hadminimal clinical utilityin neuropsychological assessment
  9. 9. NP assessment has been traditionally non-theoretical---popular models of intelligence and cognitive abilities have been derived via statistical procedures
  10. 10. NP measures traditionally selected on ability to differentiate between neurological and normal conditions---psychometric frameworks derived with factor analytic techniques to synthesize theories that were similarly derived</li></li></ul><li>Verticalfactor analysis (trait) model<br />Gf<br />Gc<br />Glr<br />G..<br />Gsm<br />Gv<br />etc<br />Attn<br />Psychometric approaches have had primary (but not sole) focus/goal on internal/structural validity within each construct domain --- Vertical models<br />
  11. 11. Horizontalmultiple regression (aptitude/functional/pragmatic) model<br />Criterion DVs<br />Gf<br />Gc<br />Glr<br />G..<br />Gsm<br />Gv<br />etc<br />Attn<br />TBI ?<br />Brain Area/function<br />Neuropsychological approaches have had primary (but not sole) focus/goal on external/predictive (Dx) validity – Horizontal models<br />Result has been many NP measures are mixture measures of multiple CHC domain abilities (which abilities and in what amount [weighting] best predict criterion variables?)<br />
  12. 12. My primary goal<br />Present a different (yet compatible value-added) psychometric theory of intelligence perspective for thinking about testing cognitive abilities<br />
  13. 13. Importance Of Classification <br />Taxonomies In All Sciences<br />Classification is arguably one of the most central and generic of all our conceptual exercises…without classification, there could be no advanced conceptualization, reasoning, language, data analysis, or for that matter, social science research (K.D. Bailey, 1994).<br />A specialized science of classification of empirical entities known astaxonomy(Bailey, 1994; Prentky, 1994) is ubiquitous in all fields of study because it guides our search for information or truth.<br />
  14. 14. ?<br />Reliable variance<br /> (reliability)<br />Error variance<br />-individual/situational variables (e.g., distractibility)<br />-item variables (e.g., item sampling and item gradients;<br /> test floor and ceiling)<br />-examiner variables (e.g., rapport, scoring and <br /> administration errors)<br />-testing environment variables (e.g., noise, comfort)<br />Unique abilitiesnot shared <br />in common with other CHC factor indicators (specificity)<br />We have been searching for an empirically/theoretically-based cognitive taxonomyto interpret the reliable variance of cognitive tests<br />
  15. 15. The Cattell-Horn-Carroll (CHC) theory of cognitive<br />abilities is the contemporary consensus<br />psychometric model of the structure of human intelligence<br />The CHC Timeline Project (and detailed information re: CHC theory/model)can be found at IQ’s Corner blog<br />www.iqscorner.com<br />
  16. 16. g<br />T2<br />T3<br />T4<br />T5<br />T6<br />T7<br />T8<br />T9<br />T1<br />T12<br />T10<br />T11<br />T2<br />T3<br />T4<br />T5<br />T6<br />T7<br />T8<br />T9<br />T1<br />T12<br />T10<br />T11<br />T2<br />T3<br />T4<br />T5<br />T6<br />T7<br />T8<br />T9<br />T1<br />T12<br />T10<br />T11<br />T2<br />T3<br />T4<br />T5<br />T6<br />T7<br />T8<br />T9<br />T1<br />T12<br />T10<br />T11<br />T2<br />T3<br />T4<br />T5<br />T6<br />T7<br />T8<br />T9<br />T1<br />T12<br />T10<br />T11<br />PMA1<br />PMA2<br />PMA3<br />PMA4<br />PMA1<br />PMA2<br />PMA3<br />PMA4<br />PMA1<br />PMA2<br />PMA3<br />PMA4<br />PMA1<br />PMA2<br />PMA3<br />PMA4<br />…etc<br />(1b) Thurston’s Multiple Factor (Primary Mental Abilities) Model<br />…etc<br />(1a) Spearman’s general Factor model<br />G1<br />G2<br />G3<br />…etc<br />…etc<br />…etc<br />g ?<br />…etc<br />G1<br />G2<br />G3<br />…etc<br />…etc<br />(1e) Consensus Cattell-Horn-Carroll Hierarchical Three-Stratum Model <br />Arrows from g to each test<br />(rectangle) have been omitted for readability<br />Stratum III<br />g<br />G1<br />Stratum II<br />G2<br />…etc<br />Stratum I<br />…etc<br />…etc<br />(1d) Carroll’s Schmid-Leiman Hierarchical Three-Stratum Model<br />(1c) Cattell-Horn Gf-Gc Hierarchical Model<br />Stratum III<br />Note: Circles represent<br />latent factors. Squares represent manifest measures (tests; T1..). Single-headed path arrows designate factor loadings. Double headed arrows designate latent factor correlations<br />Stratum II<br />Stratum I<br />Figure 1: Major stages in the evolution of psychometric theories from Spearman’s g to Cattell-Horn-Carroll (CHC) theory<br />
  17. 17. CHC theory has entered the mainstream neuropsychological assessment literature<br />
  18. 18. A landmark event in understanding the structure of human cognitive abilities - 1993<br />
  19. 19. THE SCOPE OF CARROLL’S FACTOR ANALYTIC REVIEW<br />Reviewed factor analytic research of the past 50-60 years<br />Includes nearly all of the more important and classic factor analytic investigations<br />Started with 1,500 references<br />Final pool of 461 data sets that meet specific criteria<br />Reanalyzed all or nearly all of the data sets<br />Used exploratory methods in order to “let the data speak for themselves”<br />
  20. 20. The verdict is unanimous re: the importance of Carroll’s (1993) work<br />Richard Snow (1993):<br /> “John Carroll has done a magnificent thing. He has reviewed and reanalyzed the world’s literature on individual differences in cognitive abilities…no one else could have done it… it defines the taxonomy of cognitive differential psychology for many years to come.” <br />Burns (1994):<br />Carroll’s book “is simply the finest work of research and scholarship I have read and is destined to be the classic study and referencework on human abilities for decades to come” (p. 35).<br /> <br />John Horn (1998):<br />A “tour de force summary and integration” that is the “definitive foundation for current theory” (p. 58).  Horn compared Carroll’s summary to “Mendelyev’s first presentation of a periodic table of elements in chemistry” (p. 58).  <br />Arthur Jensen (2004):<br />“…on my first reading this tome, in 1993, I was reminded of the conductor Hans von Bülow’s exclamation on first reading the full orchestral score of Wagner’s Die Meistersinger, ‘‘It’s impossible, but there it is!’’ <br />“Carroll’s magnum opus thus distills and synthesizes the results of a century of factor analyses of mental tests. It is virtually the grand finale of the era of psychometric description and taxonomy of human cognitive abilities. It is unlikely that his monumental feat will ever be attempted again by anyone, or that it could be much improved on. It will long be the key reference point and a solid foundation for the explanatory era of differential psychology that we now see burgeoning in genetics and the brain sciences” (p. 5).<br />
  21. 21. Contemporary psychometric research has converged on <br />the Cattell-Horn-Carroll (CHC) theory of cognitive abilities as the consensusworking taxonomy of human intelligence<br />McGrew, K. (2009). Editorial: CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research, Intelligence, 37, 1-10.<br />
  22. 22. T2<br />T3<br />T4<br />T5<br />T6<br />T7<br />T8<br />T9<br />T1<br />T12<br />T10<br />T11<br />PMA1<br />PMA2<br />PMA3<br />PMA4<br />g ?<br />…etc<br />G1<br />G2<br />G3<br />…etc<br />…etc<br />(1e) Consensus Cattell-Horn-Carroll Hierarchical Three-Stratum Model <br />CHC as the consensus psychometric model of intelligence<br />Because the Carroll model is largely consistent with the model originally proposed by Cattell (1971), McGrew (2009) has proposed an integration of the two models which he calls the Cattell-Horn-Carroll (C-H-C) Integration model….Because of the inclusiveness of this model, it is becoming the standard typology for human ability. It is certainly the culmination of exploratory factor analysis. <br />The Science of Intelligence <br />(Doug Detterman, 2010; book manuscript in preparation) <br />
  23. 23. T2<br />T3<br />T4<br />T5<br />T6<br />T7<br />T8<br />T9<br />T1<br />T12<br />T10<br />T11<br />PMA1<br />PMA2<br />PMA3<br />PMA4<br />g ?<br />…etc<br />G1<br />G2<br />G3<br />…etc<br />…etc<br />(1e) Consensus Cattell-Horn-Carroll Hierarchical Three-Stratum Model <br />CHC as the consensus psychometric model of intelligence<br />“The Cattell–Horn–Carroll (CHC) theory of cognitive abilities is the best validated model of human cognitive abilities”<br />[Ackerman, P. L. & Lohman D. F. (2006).  Individual differences in cognitive functions.  In P. A. Alexander, P. Winne (Eds.), Handbook of educational psychology, 2nd edition (pp. 139-161).  Mahwah, NJ: Erlbaum.]<br />
  24. 24. T2<br />T3<br />T4<br />T5<br />T6<br />T7<br />T8<br />T9<br />T1<br />T12<br />T10<br />T11<br />PMA1<br />PMA2<br />PMA3<br />PMA4<br />g ?<br />…etc<br />G1<br />G2<br />G3<br />…etc<br />…etc<br />(1e) Consensus Cattell-Horn-Carroll Hierarchical Three-Stratum Model <br />CHC as the consensus psychometric model of intelligence<br />A significant number of Australian intelligence scholars have framed (and/or continue to frame) their research as per the extended Gf-Gc (aka. CHC) model of intelligence. Many have made foundational contributions to building the model.<br />N. R. Burns<br />T. Nettlebeck<br />L. Stankov<br />R. Roberts<br />S. Bowden<br />
  25. 25. Importance Of Classification <br />Taxonomies In All Sciences<br />Classification is arguably one of the most central and generic of all our conceptual exercises…without classification, there could be no advanced conceptualization, reasoning, language, data analysis, or for that matter, social science research (K.D. Bailey, 1994).<br />A specialized science of classification of empirical entities known astaxonomy(Bailey, 1994; Prentky, 1994) is ubiquitous in all fields of study because it guides our search for information or truth.<br />
  26. 26. Gf<br />Broad<br />RG<br />RP<br />Narrow<br />I<br />RQ<br />RE<br />CHC theory classifies abilities according to three levels or strata<br />g<br />All CHC narrow abilities and their definitions can be found at www.IAPsych.com<br />General<br />RG = Gen Sequential (deductive) Reasoning<br />I = Induction<br />RQ = Quantitative Reasoning<br />RP = Piagetian Reasoning<br />RE = Speed of Reasoning<br />
  27. 27.
  28. 28. ...most disciplines have a common set of terms and definitions (i.e., a standard nomenclature) that facilitates communication among professionals and guards against misinterpretations. In chemistry, this standard nomenclature is reflected in the ‘Table of Periodic Elements’. Carroll (1993a) has provided an analogous table for intelligence…..<br />(Flanagan & McGrew, 1998)<br />
  29. 29. g<br />Gv<br />Gf<br />Glr<br />Gs<br />Gsm<br />Gc<br />Ga<br />Reliable variance<br /> (reliability)<br />Error variance<br />-individual/situational variables (e.g., distractibility)<br />-item variables (e.g., item sampling and item gradients;<br /> test floor and ceiling)<br />-examiner variables (e.g., rapport, scoring and <br /> administration errors)<br />-testing environment variables (e.g., noise, comfort)<br />Unique abilitiesnot shared <br />in common with other CHC factor indicators (specificity)<br />CHC Theory is the best available empirically and theoretically sound cognitive ability taxonomy available today<br />
  30. 30. This is where the field of psychometric intellectual <br />assessment is at..and a bandwagon has formed<br />g<br />Gf<br />Gc<br />Induction<br /> (I)<br /> Lang.<br />Develpmt<br /> (LD) (LD)<br /> General Seq.<br /> Reasoning<br /> (RG)<br />Quantitative<br /> Reasoning<br /> (RQ)<br /> Listening<br /> Ability<br /> (LS)<br /> General<br /> Information <br /> (K0)<br /> Lexical<br />Knowledge<br /> (VL)<br /> Speed of<br />Reasoning<br /> (RE)<br />Primary ability<br />Reliable variance<br /> (reliability)<br />Secondary ability<br />Error variance<br />-individual/situational variables (e.g., distractibility)<br />-item variables (e.g., item sampling and item gradients;<br /> test floor and ceiling)<br />-examiner variables (e.g., rapport, scoring and <br /> administration errors)<br />-testing environment variables (e.g., noise, comfort)<br />Unique abilitiesnot shared <br />in common with other CHC factor indicators (specificity)<br />
  31. 31. Published WJ III CHC model (McGrew & Woodcock, 2001<br />CFA analysis of 50+ cognitive and achievement tests<br />
  32. 32. Starting point<br />Ages 6-adult CFA Broad CHC Model in WJ III Technical Manual<br />(McGrew & Woodcock, 2001)<br />g<br />.55<br />.91<br />.88<br />.73<br />.87<br />.88<br />.79<br />.82<br />.93<br />Gs <br />Gsm<br />Gv<br />Gc<br />Gq<br />Ga<br />Glr<br />Gf<br />Grw<br />First order measurement model omitted for readability purposes<br />
  33. 33. Deconstruction: The validated/published WJ III CHC structure was “torn down”<br />Psychologists need a healthy degree of positive skepticism<br />
  34. 34. Reconstruction: New structural models specified based on insights from large variety of statistical analysis of the WJ III norm data since 2001.<br />
  35. 35. Stage (Thing 2) approach<br />Theoretical considerations (Berlin BIS model; dual-processing cognitive models; etc.) also served as guides during exploratory model specification.<br />Important caution: The final models demonstrated near identical model fit statistics (e.g., some equivalent models). Also, the large amount of exploratory model specification employed has the potential to capitalize on "random chance factors"- thus rendering statistical model evaluation comparisons useless.<br />Thegoal of these analyses were to "push the edge of the envelope" of the WJ three data via SEM-based model generation procedures. Thelaw of parsimony was deliberately discarded.<br />Cross validation of proposed final models in independent samples is needed.<br />
  36. 36. Variety of Exploratory Data Analyses with Variety of Datasets<br />Data Sets<br /><ul><li>WJ III norm data
  37. 37. WJ III+ other batteries </li></ul>(WISC-R; WAIS-III/WMS-III/KAIT)<br /><ul><li>WAIS-IV subtest correlations</li></ul>Methods<br /><ul><li>Cluster analysis
  38. 38. Multidimensional scaling analysis (MDS) – 2D and 3D
  39. 39. Standard and Carroll EFA+CFA exploratory factor analysis
  40. 40. Model-generation CFA (SEM)
  41. 41. CHC cognitive causal SEM models</li></li></ul><li>Cluster analysis of WJ III and WJ III + other batteries (joint analysis) + other batteries alone (WAIS-IV)<br />
  42. 42. Cluster Analysis<br />Cluster analysis is an set of exploratory (structure discovering) data analysis tools for solving classification problems.  Sometimes it has been called a “poor mans” factor analysis. Its object is to sort cases (people, things, events, tests, etc) into groups, or clusters, so that the degree of association is strong between members of the same cluster and weak between members of different clusters.  Each cluster thus describes, in terms of the data collected, the class to which its members belong; and this description may be abstracted through use from the particular to the general class or type.<br />CA often helps confirm EFA results and similar to MDS (multidimensional scaling), can spatially represent the degree of similarity of tests measuring a common dimension (dimension cohesion). Its hierarchical sequential structure is often useful in suggesting higher-order dimensions/factors.<br />
  43. 43. Cluster Analysis<br />The strength of cluster analysis (discovering structure in data with more relaxed statistical assumptions and mathematics than data reduction methods such as exploratory factor analysis) is also one of its major limitations. CA will find groups or clusters in random data. The algorithms are designed to find any structure, even if structure is not present. As a result, the later clusters in a hierarchical approach are often “necessary evils or by products”--CA must end with one grand cluster. Thus, often in CA a point is reached where the further collapsing of meaningful groupings ceases to make substantive sense. It is important to recognize this in the resultant cluster dendogram.<br />Also, given the above, tests (objects, etc.) that share little in common with other measures need to be assigned to some grouping and cluster. Thus, often “loner” type tests will appear in very meaningful clusters but will not be consistent with the underlying interpretation of the grouping/cluster. Sometimes this suggests new insights regarding the test. Other times these “I’ve got to be grouped with some cluster somewhere in the process” tests are best ignored and should not interpreted as discounting the strong communality of a grouping or clustering of tests<br />
  44. 44. AS<br />CF<br />SA<br />UD<br />Gf (language-based)<br />AP<br />Clusters beyond this point not easily interpretable – see limitations of CA method<br />NS<br />Complex lang. processing/<br />reasoning?<br />QC<br />NM<br />Gf<br />CAL<br />RQ<br />MF<br />Gf (numeric-based)<br />RDF<br />WF<br />? = no apparent current CHC ability classification<br />Red font = CHC factors<br />Blue font = possible new abilities at different strata to consider<br />PSC<br />RV<br />Gs (achievement)<br />ED<br />?<br />LW<br />SP<br />RC<br />WS<br />SOS<br />Orthographic <br />processing?<br />Grw (words,<br />sent, con. disc)<br />WA<br />PV<br />VC<br />Grw<br />GI<br />Grw (phonemes)<br />AK<br />OC<br />LD/VL<br />STR<br />DRS<br />K0<br />RPN<br />?<br />REF<br />Gc<br />DS<br />LS<br />PC<br />VM<br />NA/R4 (RAN?)<br />CO<br />Gs (cognitive)<br />VCL<br />R9<br />PR<br />BR<br />Ppr<br />SPR<br />Pc<br />SNP<br />PLN<br />MV<br />NR<br />Gv<br />Cluster analysis (Wards method) of 50 WJ III cognitive and achievement tests (ages 6-18; NU norms)<br />Kevin McGrew<br />11-13-09<br />AWM<br />SR/Vz<br />MS<br />?<br />MW<br />SR/Vz+<br />IW<br />SB<br />MW<br />AA<br />Gsm<br />DRV<br />MS<br />VAL<br />Temporal Processing or Tracking /<br />Aud. Sequential Processing<br />MN<br />PC<br />DRM<br />Ga<br />Glr-MA<br />Distances<br />2.5<br />0.5<br />1.0<br />1.5<br />2.0<br />0.0<br />
  45. 45. Cluster analysis (Ward method) for all WJ3 tests across all ages (K. McGrew 12-7-03)<br />VISCLO <br />MV<br />Gv (content facet—visual/figural) <br />PICREC <br />SNDPTV <br />SPAREL <br />SR/Vz<br />BLKROT <br />SR/Vz<br />PLAN <br />RPCNAM <br />NA<br />RETFLU <br />AUDATN <br />Ga <br />SNDBLN <br />PC<br />INCWRD <br />Ga+Gsm (content facet–auditory)<br />MEMWRD <br />System 2 (controlled) cognitive processing<br />MS<br />MEMSEN <br />AWKMEM <br />Gsm<br />NUMREV <br />SPELL <br />LWIDNT <br />[ phoneme/grapheme knowledge ]<br />WRDATK <br />SPLSND <br />Grw (content facet –<br />Language; read or written)<br />WRTSMP <br />EDIT <br />SNDAWR <br />V<br />RDGVOC <br />PSGCMP <br />RC<br />ORLCMP <br />VERBANL<br />LS<br />Gc (content facet – words <br />& connected discourse)<br />STYREC <br />ORALVOC<br />GENINF <br />LD/VL<br /> PICVOC<br />AKHUM <br />AKSOC <br />AKSCI <br />K0<br />CALC <br />QCCONC <br />A3/KM<br />APPROB <br />NUMSER <br />Gq (content facet – numerical) <br />NUMMAT <br />RQ<br />ANLSYN <br />UNDDIR <br />Gf<br />CONFRM <br />(Shading designates stratum II abilities)<br />VAL <br />(content facet – figural/visual)<br />MEMNAM <br />MA<br />WRTFLU <br /> g (stratum III)<br />RDGFL <br />Gs (ach/content)<br />MTHFLU <br />CRSOUT <br />Gs System 1 (automatic) cognitive processing<br />VISMAT <br />PAIRCN <br />P<br />DECSPD <br />Gs (cog/process)<br />Distances<br />0.0<br />0.5<br />1.0<br />1.5<br />2.0<br />2.5<br />© Institute for Applied Psychometrics llc 12-07-03<br />
  46. 46. WAIS-IV test Cluster Tree (Wards method) <br />of WAIS-IV subtest intercorrelations<br />Verbal know & comp (Gc) <br />IN<br />CO<br />VC<br />Level (unspeeded) cognitive abilities<br />SI<br />Short-term & working memory (Gsm)<br />LN<br />DS<br />AR<br />Fluid Reasoning (Gf)<br />FW<br />MR<br />Visual-Spatial Proc.(Gv)<br />BD<br />VP<br />General Intelligence (g) as per WAIS-IV<br />?<br />PCM<br />CD<br />Processing Speed (Gs)<br />(rate cognitive abilities)<br />SS<br />CA<br />0.0<br />0.5<br />1.0<br />1.5<br />Distances<br />
  47. 47. PS<br />PCSS<br />Gv<br />BLKROTWR<br />SR<br />BDSS<br />SR/VZ<br />OS<br />SPAREL<br />CONFRM<br />UNDDIR<br />RQ<br />Thinking Abilities /<br />Controlled Processing <br />NUREAWR<br />Gq/Gf<br />QNTCON<br />APPROB<br />A3<br />ARITHSS<br />CALC<br />MA<br />MEMNAMWR<br />Glr<br />VAL<br />ORLCMP<br />ANLSYN<br />Gf/MW?<br />AWKMEM<br />MW<br />NUMREV<br />DSSS<br />PLAN<br />COMPSS<br />VL<br />SIMSS<br />LD<br />Gc<br />VOCSS<br />Acquired Knowledge<br />INFOSS<br />VRBCMP<br />ACKNOWWR<br />GENINF<br />STYREC<br />NA/R4/RAN<br />RETFLU<br />Cog Fluency/ Efficiency (speeded)<br />RPCNAM<br />Gs<br />DECSPD<br />SSSS<br />VISMAT<br />P/R9<br />CODSS<br />Cognitive Efficiency /<br />Automatic Processing<br />MS<br />MEMSENWR<br />Succ Proc/ Gsm / Temp Tracking ?<br />MEMWRD<br />PC<br />INCWRD<br />BLND<br />Cog Fluency/ Efficiency (unspeeded)<br />US/UR<br />AUDATN<br />SNDPATWR<br />PICREC<br />VISCLOWR<br />McGrew-Evans WJ III/WISC-III Cluster Analysis Interpretation Worksheet<br />Phelps WJ III Technical Manual<br />Validity sample – n=150 grade 3-5<br />© Institute for Applied Psychometrics, llc 02-05-02<br />
  48. 48. WJR Visual Matching<br />P (Gs)<br />WJR Cross Out<br />RG<br />WJR Analysis-Synthesis<br />Gf<br />KAIT Logical Steps<br />I<br />KAIT Mystery Codes<br />WJR Concept Formation<br />CS<br />WJR Visual Closure<br />Gv<br />WISC3 Object Assembly<br />MV<br />WJR Picture Recognition<br />KAIT Memory for Block Designs<br />PC (Ga)<br />WJR Incomplete Words<br />WJR Sound Blending<br />LD<br />KAIT Double Meanings<br />KAIT Famous Faces<br />WJR Picture Vocabulary<br />Gc<br />VL<br />WJR Oral Vocabulary<br />KAIT Definitions<br />Gc/Grw<br />WJR Letter-Word ID<br />WJR-Reading Vocabulary<br />WJR Visual-Auditory Learning<br />WJR Memory for Names<br />MA<br />KAIT Rebus Learning<br />KAIT Rebus Learning-Delayed<br />Glr<br />KAIT Auditory Comprehension-Delayed<br />LS/MM<br />Gy<br />KAIT Auditory Comprehension<br />WJR Memory for Sentences<br />MS (Gsm)<br />WJR Memory for Words<br />Distances<br />0<br />1<br />2<br />3<br />4<br />Flanagan & McGrew (1998) WJ-R/KAIT joint cluster analysis<br />© Institute for Applied Psychometrics llc 8-24-03<br />
  49. 49. Late Career Carroll-EFA+CFA Method (e.g., Carroll, 2003) of WJ III<br />
  50. 50. Traditional EFA of WJ III at <br />various age levels<br />
  51. 51. CHC CFA (SEM) of WJ III and WJ III + other batteries (joint analysis)<br />
  52. 52. Gregg/Hoy College Sample-WJ III + WAIS-III + WMS-III<br />(LD/Non-LD; n=200)<br />(McGrew et al., 2001)<br />© Institute for Applied Psychometrics, llc 02-05-02<br />
  53. 53. © Institute for Applied Psychometrics, llc 02-05-02<br />
  54. 54. SEM Causal Information Processing Models of WJ III<br />
  55. 55. Note: Ovals represent<br />latent factors. Rectangles represent manifest measures (tests). Single-headed arrows to tests from ovals designate factor loadings. Single headed arrows between ovals represent causal paths (effects). Test and factor residuals omitted for readability purposes.<br />Visual Matching<br />Mem for Sentences<br />.78<br />.78<br />Decision Speed<br />.49<br />.66<br />MS<br />Gs<br />Mem for Words<br />.75<br />.81<br />Cross Out<br />.80<br />.27<br />Aud Working Mem<br />.72<br />MW<br />Numbers Reversed<br />.72<br />Block Rotation<br /> .07<br />.53<br />.07<br />Verbal Comp<br />Spatial Relations<br />Picture Recognition<br />.69<br />Gv<br />.94<br />.47<br /> .82<br />Oral Comp<br />Memory for Names<br />.74<br />Gc<br />.83<br />.88<br />General Information<br />.87<br />.59<br />Retrieval Fluency<br />Analysis-Synthesis<br />.50<br />.92<br />g<br />Glr<br />.74<br />Del Recall-VAL<br />.69<br />.95<br />Concept Formation<br />.72<br />.78<br />Gf<br />76 % of g variance explained<br />.77<br />.78<br />Vis-Aud Lrng (VAL)<br />Numerical Reas<br />Sound Blending<br />Incomplete Words<br />.74<br />.58<br />Ga<br />Figure 4: WJ III CHC information processing  g causal model (ages 14-19)<br />.40<br />Sound Patterns<br />Cognitive Efficiency<br />
  56. 56. Guttman’s Radex Theory<br />Ability tests can be classified by:<br /><ul><li> Degree of cognitive complexity
  57. 57. Differences in kind of content
  58. 58. Differences in type of processes</li></ul>UsesMDS (multidimensional scaling)<br />
  59. 59. Example of MDS (Radex Model) <br />The closer a test is to the center of the figure, the more it is related to the underlying general dimension of the battery. Also, the center represents the most cognitively complex (i.e., have the largest number of performance components) tests.<br />Tests that group together are interpreted as sharing common stimulus content or cognitive processing characteristics<br />
  60. 60. MDS (Guttman Radex model) of WAIS-IV subtest intercorrelations<br />3<br />Short-term memory /working memory (Gsm)<br />1<br />Processing speed (Gs)<br />LN<br />DS<br />CD<br />Verbal know & <br />comp (Gc) <br />VC<br />CO<br />Dimension-2<br />Fluid <br />reasoning (Gf)<br />AR<br />MR<br />CA<br />SS<br />SI<br />IN<br />FW<br />BD<br />VP<br />-1<br />PCM<br />Visual-spatial processing (Gv)<br />-3<br />-3<br />-1<br />1<br />3<br />Dimension-1<br />
  61. 61. MDS (Guttman Radex model) of WAIS-IV subtest intercorrelations<br />It is a common practice in MDS analysis to visually partition the MDS spatial configuration into broader dimensions and consider interpretation at a higher-order level. <br />The current WAIS-IV MDS revealed the following hypothesized higher-order structure<br />Note – similar to hand rotation of factors in early days of EFA, K. McGrew took the cross-hair lines and hand rotated them (simultaneosly) until a meaningful pattern emerged. The four-broad dimensions are interpreted as being very similar to the four cognitive domains of Woodcock’s Cognitive Performance Model (CPM) – see next two slides<br />Short-term memory /working memory (Gsm) – Cognitive Efficiency unspeeded/memory<br />3<br />Verbal know & <br />comp (Gc) – Acquired Knowledge or “Product” dominant abilities? <br />1<br />LN<br />DS<br />CD<br />VC<br />AR<br />CA<br />CO<br />MR<br />SS<br />Processing speed (Gs) - <br />Cognitive Efficiency speeded<br />SI<br />IN<br />FW<br />BD<br />VP<br />-1<br />PCM<br />Fluid Reasoning (Gf) and Visual-spatial processing (Gv) –Thinking or “Process” dominant abilities?<br />-3<br />-3<br />-1<br />1<br />3<br />
  62. 62. <ul><li>Thinking abilities
  63. 63. Process-dominant “level” abilities
  64. 64. Visual-spatial/figural (low linguistic) stimuli (Gv,Gf,Glr)
  65. 65. Controlled cognitive processing
  66. 66. Acquired knowledge abilities
  67. 67. Product -dominant “level” abilities
  68. 68. Language (aud-linquistic) and symbolic stimuli (Ga,Gc,Grw,Gq)
  69. 69. Controlled cognitive processing</li></ul>2<br />WJ III Radex Model<br />IW<br />1<br />Broad CHC factor <br />ability font key legend<br />(based on CFA studies)<br />drm<br />mn<br />SB<br />PV<br />drs<br />MS<br />OC<br />STR<br />BR<br />Gf<br />SNP<br />Gsm<br />GI<br />NM<br />AK<br />drv<br />RV<br />PSC<br />val<br />glr<br />VC<br />WA<br />LW<br />DIM(2)<br />ED<br />SA<br />0<br />SOS<br />AP<br />REF<br />CF<br />SPL<br />Ga<br />WS<br />QC<br />AS<br />RDF<br />UD<br />NS<br />Gv<br />CAL<br />WF<br />RPN<br />AWM<br />SPR<br />Gs<br />MW<br />MF<br />NR<br />Cognitive efficiency (speeded-Gs) rate/fluency abilities<br /><ul><li>Automatic cognitive processing</li></ul>Gc<br />VCL<br />VM<br />CO<br />Grw<br />-1<br />Gq<br />PC<br />DS<br />AA<br />PR<br />PLN<br />Cognitive efficiency (unspeeded-Gsm) abilities<br /><ul><li>Automatic cognitive processing</li></ul>-2<br />The grand “big picture model” --- probably requires a subsequent 3-D MDS analysis to see clearly….more to come<br />-3<br />-2<br />-1<br />0<br />1<br />2<br />DIM(1)<br />
  70. 70. Gv<br />2<br />PL<br />BR<br />PR<br />More <br />visual-spatial <br />& figural<br />Gf<br />SR<br />DIM(3)<br />VC<br />Gq<br />AS<br />MN<br />SPV<br />VAL<br />CF<br />NM<br />AP<br />CO<br />NS<br />DS<br />CNC<br />CA<br />PC<br />VM<br />Gsm<br />AA<br />More auditory<br />& linguistic<br />SA<br />RDF<br />-3<br />MF<br />WF<br />BL<br />NR<br />RF<br />AWM<br />IW<br />More process-<br />dominant<br />MW<br />RPN<br />DIM(1)<br />2<br />More System 2 <br />(controlled) cognitive<br /> processes<br />Red font = Gs<br />DIM(2)<br />Note – all Gc and <br />Grw unspeeded tests <br />are omitted and are <br />located within<br />dashed area in center<br />0<br />0<br />Blue font = Ga<br />More System 1 <br />(automatic) cognitive<br /> processes<br />More product-<br />dominant<br />2<br />-2<br />WJ III 3-D MDS Model<br />© Institute for Applied Psychometrics llc 12-07-03<br />
  71. 71. “Intelligent” testing and interpretation<br />requires…knowing thy instruments<br />Neuropsych. interpretation<br />Error variance (reliability)<br />External criterion relevance<br />Uniqueness (specificity)<br />g loading<br />Degree of cognitive complexity<br />CHC Ability factor classifications<br />Degree of cultural loading<br />Degree of linguistic demand<br />Metric scale<br />Information processing & stimulus/response characteristics<br />Ability domain cohesion<br />
  72. 72. Food for thought: Are the MDS quadrants or partitions reflecting content “facets” or a combination of content“facets and “operations” as per the BIS model of intelligence….see next slide<br />
  73. 73. BIS: Berlin Model of <br />Intelligence Structure<br />Gs<br />Gsm + Glr (level abilities) <br />Carroll’s Gy<br />Glr(fluency abilities)<br />Gf<br />Note difference in term in different versions:<br />Processing capacity defined as complex reasoning<br />
  74. 74. Unveiling of preliminary new models in WJ III norm data<br />
  75. 75. Alternative Model 1<br />g<br />.39<br />Gs<br />(Cognitive speed)<br />.82<br />.88<br />.71<br />.87<br />.86<br />.79<br />.84<br />1.0<br />.64<br />.55<br />.62<br />.59<br />.36<br />.49<br />Gs (Grw)<br />.54<br />Gsm<br />Gv<br />Gs (Gv)<br />Gs (Gq)<br />Gs (Gc)<br />.62<br />Gc<br />Gq<br />Ga<br />Glr<br />Gf<br />Grw<br />First order measurement model and other lower-order latent factors (below smallest oval latent factors) omitted for readability purposes. Thicker path arrow with bold font 1.0 parameter designates path that had to be constrained (fixed) to 1.0<br />
  76. 76. Alternative Model 2<br />.86<br />.99<br />.93<br />g<br />.36<br />1.0<br />Cognitive efficiency<br />(More automatic & effortless)<br />Cog. knowledge domains/systems<br />(product/content abilities) <br />Lang/linguistic./symbolic abilities<br />Cognitive operations<br />(process/operations/analytic/rule-based abilities) figural-spatial, lower-linguistic abilities<br />Gs<br />(Cognitive speed)<br />.89<br />.76<br />.91<br />.85<br />1.0<br />.83<br />.82<br />.64<br />.52<br />.60<br />.58<br />.41<br />.52<br />Gs (Grw)<br />.58<br />Gsm<br />Gv<br />Gs (Gv)<br />Gs (Gq)<br />Gs (Gc)<br />.67<br />Gc<br />Gq<br />Ga<br />Glr<br />Gf<br />Grw<br />First order measurement model and other lower-order latent factors (below smallest oval latent factors) omitted for readability purposes. Thicker path arrow with bold font 1.0 parameter designates path that had to be constrained (fixed) to 1.0<br />
  77. 77.
  78. 78.
  79. 79.
  80. 80. Close inspection of the evidence suggests that generic dual-system theory is currently oversimplified andmisleading<br />We might be better off talking about type 1 and type 2 processes since all theories seem to contrast fast, automatic, or unconscious processes with those that are slow, effortful, and conscious (Samuels 2006). Such terminology does not commit use to a two-system view. However, it would then be helpful to have some clear basis for this distinction<br />My suggestion is that type 2 processes are those that require access to a single, capacity-limited central working memory, while type 1 processes do notrequire such access. This implies that the core features of type 2 processes are that they are slow, sequential, and capacity limited. The last feature implies also that their functioning will correlate with individual differences in cognitive capacity and be disrupted by concurrent working memory load. Depending upon what else is assumed about working memory, there may be a rationale for describing such type 2 processes as registering in consciousness and having properties associated with executive processes and intentional, higher-order control.<br />
  81. 81. Alternative Model 2b<br />.93<br />.99<br />1.0<br />.86<br />g<br />.36<br />1.0<br />Type I cognitive processing<br />(Cognitive efficiency):<br />More automatic & effortless<br />Cog. knowledge domains/systems<br />(product/content abilities) <br />Lang/linguistic./symbolic abilities<br />Type II cognitive processing:<br />More cognitively controlled & deliberate <br />Cognitive operations<br />(process/operations/analytic/rule-based abilities) figural-spatial, lower-linguistic abilities<br />Gs<br />(Cognitive speed)<br />.89<br />.76<br />.91<br />.85<br />1.0<br />.83<br />.82<br />.64<br />.50<br />.60<br />.58<br />.41<br />.52<br />Gs (Grw)<br />.58<br />Gsm<br />Gv<br />Gs (Gv)<br />Gs (Gq)<br />Gs (Gc)<br />.67<br />Gc<br />Gq<br />Ga<br />Glr<br />Gf<br />Grw<br />First order measurement model and other lower-order latent factors (below smallest oval latent factors) omitted for readability purposes. Thicker path arrow with bold font 1.0 parameter designates path that had to be constrained (fixed) to 1.0<br />
  82. 82. Alternative Model 3<br />.95<br />.99<br />.94<br />.21<br />g<br />Auditory temporal (serial) Proc.<br />Visual/figural (parallel?) Proc.<br />Cog. knowledge <br />domains/systems<br />Gs<br />(Cognitive speed)<br />.89<br />.77<br />.91<br />.85<br />1.0<br />.82<br />.86<br />.90<br />.63<br />.45<br />.60<br />.54<br />.48<br />.65<br />Gs (Grw)<br />.64<br />Gsm<br />Ga<br />Gs (Gv)<br />Gs (Gq)<br />Gs (Gc)<br />.73<br />Gc<br />Gq<br />Gv<br />Glr<br />Gf<br />Grw<br />First order measurement model and other lower-order latent factors (below smallest oval latent factors) omitted for readability purposes. Thicker path arrow with bold font 1.0 parameter designates path that had to be constrained (fixed) to 1.0<br />
  83. 83. Alternative Model 3b<br />1.0<br />.94<br />.21<br />Cognitive operations<br />(process/operations/<br />analytic/rule-based abilities)<br />g<br />.95<br />1.0<br />Auditory temporal (serial) Proc.<br />Visual/figural (parallel?) Proc.<br />Cog. knowledge <br />domains/systems<br />Gs<br />(Cognitive speed)<br />.89<br />.77<br />.91<br />.85<br />1.0<br />.82<br />.86<br />.90<br />.63<br />.45<br />.60<br />.54<br />.48<br />.66<br />Gs (Grw)<br />.64<br />Gsm<br />Ga<br />Gs (Gv)<br />Gs (Gq)<br />Gs (Gc)<br />.74<br />Gc<br />Gq<br />Gv<br />Glr<br />Gf<br />Grw<br />First order measurement model and other lower-order latent factors (below smallest oval latent factors) omitted for readability purposes. Thicker path arrow with bold font 1.0 parameter designates path that had to be constrained (fixed) to 1.0<br />
  84. 84. Pushing the edge of the envelope of CHC theory and the WJ III measurement model: Part IIThe first-order measurement model and implications for interpretation of WJ III tests <br />
  85. 85. Glr and Gsm measurement models were similar to<br />those originally reported by McGrew & Woodcock (2001)<br />
  86. 86. See next slide for other<br />indicators<br />Vis. Clos. (.41)<br />Blk. Rot. (.52)<br />Spat. Rel. (.66)<br />Pic. Rec (.43)<br />Planning (.43)<br />Alternative Models: WJ III Measurement model for speed factors<br />Gq<br />Gv<br />.54<br />Gs(Gq)<br />.36<br />.62<br />Gs(Gv)<br />GGs<br />(Cog Spd)<br />.64<br />.55<br />Gs(Gc)<br />.59<br />Gc<br />.49<br />Gs(Grw)<br />See next slide for other<br />indicators<br />Grw<br />.62<br />Wrd. Atk. (.78) Edit. (.78)<br />Psg. Cmp.* (.55) Wrt. Smp, (.76)<br />Rdg. Voc.* (.34) Spelling (.86)<br />LWrdID (.89)<br />* Dual loading on Gc on next slide <br />
  87. 87. Alternative Models: WJ III Measurement model for possible new Gf factor structure<br />Calculation (.75)<br />Gq<br />.34<br />.51<br />.27<br />Gf (RQ)<br />.66<br />.17<br />Gf<br />.99<br />Gf *<br />.70<br />Gc<br />Gen. Info .(.89)<br />Acd. Knw. (.89)<br />Orl. Cmp. (.77)<br />Psg. Cmp. (.30) (.55-Grw)<br />Rdg. Voc. (.54) (.34-Grw)<br />Mem. Sen. (.36) (.38- Gsm)<br />Story Rec. (.29) (.39-Glr)<br />Sound Awareness and Understanding Directions did not load on any other factors<br />Gf * = complex language-based working memory and reasoning?<br />
  88. 88. Iteration 1:<br />CHC-based<br />Intelligence model of WJ III battery<br />Kevin McGrew<br />8-18-2010<br />See handouts for clear copy<br />
  89. 89. Gf (RQ)<br />.66<br />Gf<br />.99<br />Gf *<br />Hmmmm…???<br />
  90. 90. It is time to look at some non-CHC/Gf-Gc research on reasoning (Gf): Alternative lenses<br />
  91. 91. The distinction between inductive and deductive reasoning (i.e., CHC/Gf-Gc Carroll-type model) may be outdated (Wilhelm, 2005)<br />Most established reasoning tests confound the direction of inference with deductive and inductive reasoning task<br />(Whilhelm, 2005)<br />
  92. 92. Whilhelm tested Gf model’s as per CHC (I, RQ, RG) and BIS (verbal, quant, figural) structures, and various model interactions. The following was the best fitting model<br />
  93. 93.
  94. 94. CFA using dual indicators (split-half—odd/even item sets) for each test:<br />Conclusion: WJ III RG, I, RQ tests are highly correlated but do measure different aspects of Gf<br />
  95. 95. WJ III CHC Gf model<br />Fit for this and prior model (prior slide) more-or-less equivalent<br />
  96. 96. Lets add in more CHC domain indicators<br />
  97. 97. f8<br />r12<br />2<br />8<br />.<br />PICVOCER<br />.<br />7<br />PicVoc<br />4<br />r13<br />4<br />f1<br />PICVOCOR<br />9<br />.<br />r0<br />.<br />9<br />4<br />ANLSYNER<br />6<br />9<br />.<br />r14<br />GENINFOR<br />AnlSyn<br />7<br />GenInf<br />9<br />.<br />9<br />5<br />.<br />r1<br />4<br />9<br />ANLSYNOR<br />.<br />r15<br />GENINFER<br />f9<br />Gc<br />f2<br />r16<br />.<br />0<br />9<br />9<br />8<br />.<br />r2<br />ACKNOWOR<br />.<br />CONFRMER<br />9<br />5<br />AcdKnw<br />.<br />9<br />1<br />ConFrm<br />r17<br />ACKNOWER<br />r3<br />5<br />9<br />f10<br />.<br />.<br />CONFRMOR<br />7<br />r18<br />7<br />.<br />1<br />9<br />2<br />.<br />1<br />ORLVOCER<br />OrlVoc<br />.<br />9<br />2<br />f3<br />r19<br />r4<br />Gf<br />ORLVOCOR<br />.<br />9<br />4<br />NUMSERER<br />f11<br />r20<br />NumSer<br />5<br />1<br />8<br />.<br />2<br />VERBANLER<br />.<br />.<br />r5<br />9<br />VrbAnl<br />9<br />4<br />NUMSEROR<br />9<br />.<br />r21<br />VERBANLOR<br />.<br />9<br />0<br />3<br />7<br />f4<br />.<br />f12<br />Gf<br />.<br />9<br />r6<br />5<br />f14<br />NUMMATER<br />(lang)<br />r22<br />NumMat<br />9<br />8<br />.<br />SNDAWRER<br />r7<br />SndAwr<br />f13<br />4<br />9<br />f5<br />NUMMATOR<br />.<br />r23<br />SNDAWROR<br />.<br />8<br />8<br />r8<br />.<br />r24<br />6<br />APPROBER<br />5<br />AppPrb<br />0<br />9<br />UNDDIRER<br />.<br />Gq<br />r9<br />r25<br />UndDir<br />APPROBOR<br />f6<br />UNDDIROR<br />3<br />9<br />r10<br />.<br />.<br />8<br />8<br />CALCER<br />f7<br />f15<br />Calc<br />r11<br />CALCOR<br />7<br />8<br />.<br />Gf sub-abilities differentiated by content/stimulus features (Wilhelm model)<br />f16<br />.<br />5<br />f18<br />8<br />Gf<br />(vis)<br />2<br />.<br />9<br />3<br />.<br />3<br />8<br />8<br />.<br />.<br />9<br />2<br />f19<br />.<br />9<br />g<br />9<br />3<br />9<br />.<br />.<br />9<br />4<br />8<br />7<br />.<br />Gf<br />.<br />9<br />6<br />.<br />(qnt)<br />8<br />9<br />.<br />5<br />9<br />6<br />3<br />.<br />f17<br />.<br />9<br />7<br />6<br />9<br />.<br />.<br />9<br />6<br />Although some fit stats are slightly better for this model (when compared to<br />model on prior slide) using practical criteria they are more-or-less equivalent<br />
  98. 98. Important Reminder: All statistical methods, such<br />as factor analysis (EFA or CFA) have limitations and constraints.<br />It only provides evidence of structural/internal validity and typically nothing about external, developmental, heritability, neurocognitive validity evidence<br />Need to examine other sources of evidence and use other methods – looking/thinking outside the factor analysis box<br />
  99. 99. Additional support for differentiation of Gf by type of content or stimulus features<br />3<br />Note which tests are near the center: More cognitively complex<br /><ul><li> Snd Awareness
  100. 100. Under. Directions.</li></ul>#/quant.<br />Lang (aud-verbal)<br />1<br />Calc<br />ApPrb<br />AcdKn<br />NumMat<br />PicVoc<br />GenInf<br />NumSer<br />SndAwr<br />Reasoning (procedural/Gf)-------Recall (declarative/Gc/Gq))<br />OrlVoc<br />UndDir<br />AnlSyn<br />VrbAnl<br />-1<br />Visual-figural<br />ConFrm<br />-3<br />-3<br />-1<br />1<br />3<br />Language (verbal/aud.)--------Nonverbal (#’s,visual)<br />Guttman Radex MDS model of WJ III Gf, Gc, and Gq test indicators<br />
  101. 101. Thing 3 – attempt to integrate Thing 1 and Thing 2 with neuropsychological<br />assessment models<br />
  102. 102. The First Commandment of Neuropsychological Assessment<br />"If one writes a book on neuropsychological assessment, thou shall not write a book that is less than 3 inches thick or less than 3 lbs in weight“ (McGrew, August 13, 2010)<br />
  103. 103. Lets look at the pieces one by one – blow them up<br />
  104. 104. Arm-chair factor analysis of neuropsych. assessment domains [and CHC construct mapping] (K. McGrew; 8-18-10) [I of 3]<br />g<br />Gf<br />Gc<br />Grw<br />Gq<br />
  105. 105. Arm-chair factor analysis of neuropsych. assessment domains [and CHC construct mapping] (K. McGrew; 8-18-10) [I of 3]<br />Gv<br />Ga<br />Gsm<br />Glr<br />
  106. 106. Arm-chair factor analysis of neuropsych. assessment domains [and CHC construct mapping] (K. McGrew; 8-18-10) [I of 3]<br />Gs<br />Gsm<br />AC<br />??<br />Gp<br />Gps<br />Go<br />Gh<br />Gk<br />
  107. 107. Hypothesized (“working”) CHC-based intelligence model (iteration 2)<br />Kevin McGrew (8-26-2010)<br />
  108. 108. Mapping of current CHC domains with hypothesized new CHC-based intelligence model<br />Kevin McGrew<br />8-18-2010<br />Lets look at the pieces one by one – blow them up<br />Motor functions (including motor speed) - Expressive across domains?<br />
  109. 109.
  110. 110. Empirical examples of Gkn domains<br />From Carroll (1993)<br />
  111. 111. Empirical examples of Gkn domains<br />Ackerman et al. research group<br />
  112. 112.
  113. 113.
  114. 114. Gp and Gps across domains<br />Motor functions (including motor speed) - Expressive across domains?<br />
  115. 115.   <br />. <br />The somatosensory system<br />The cortical homunculus was discovered by Wilder Penfield<br />
  116. 116. Olfactory abilities/functioning (Go)<br />
  117. 117. Olfactory abilities/functioning (Go): Possible<br />sub-abilities mentioned in the literature<br /><ul><li> Olfactory memory (OM)
  118. 118. Odor-evoked memories
  119. 119. Episodic odor memory
  120. 120. Olfactory store in working memory
  121. 121. Olfactory sensitivity (OS) /detection
  122. 122. Odor specific abilities (O1, O2, O3, O4)
  123. 123. Odor identification/recognition/detection</li></ul> /discrimination<br /><ul><li> Olfactory thresholds (and reaction time)
  124. 124. Olfactory acuity
  125. 125. Semantic odor networks/odor naming
  126. 126. Olfactory imagery
  127. 127. Odor discrimination
  128. 128. Odor awareness
  129. 129. Sexual role of odors
  130. 130. Ecological odor sensitivity</li></li></ul><li>Olfactory abilities/functioning (Go): Dx importance<br />(Doty, 2001)<br />
  131. 131.
  132. 132. This is research/work in progress: Suggested research that needs to be explored and integrated. Go from here to……………..<br />
  133. 133.
  134. 134. “Intelligent” testing and interpretation<br />requires…knowing thy instruments<br />Neuropsych. interpretation<br />Error variance (reliability)<br />External criterion relevance<br />Uniqueness (specificity)<br />g loading<br />Degree of cognitive complexity<br />CHC Ability factor classifications<br />Degree of cultural loading<br />Degree of linguistic demand<br />Metric scale<br />Information processing & stimulus/response characteristics<br />Ability domain cohesion<br />
  135. 135. This is NOT a model of human functioning – it is a “working” heuristic of Kevin McGrew’s current hypothesized thinking (iteration 3?) regarding the important dimensions that may be important in the development and interpretation of measures of human abilities …………. (not a Guilford SOI model where all cells are believed to exist)<br />Content/stimulus dimension<br />Language (aud.-verb.)<br />Numerical/quant.<br />Somatasensory<br />Visual-figural<br />Olfactory<br />?: Is the low-how cog. complexity continuum simply a continuous representation of the Type 1/I processing distinction ?<br />Cognitive knowledge <br />domains/systems<br />Cognitive operations<br />Type II<br />Processing<br />Cognitive control<br />High<br />Abilty domain dimension<br />Cognitive efficiency<br />Sensory functions<br />Low<br />Type I<br />Processing<br />Motor functions<br />Cognitve complexity <br />dimension<br />Note: CHC taxonomy is embedded in the ability domain dimension (see prior slides) <br />
  136. 136. g – speed ?<br />Stratum III<br />(General)<br />Stratum II<br />(Broad)<br />Stratum I<br />(Narrow)<br />Gp<br />Broad Psycho-<br />Motor Ability<br />Gt<br />Broad Decision<br />Speed<br />Gs<br />Broad Cognitive<br />Speed<br />Gps<br />Broad Psycho-<br />Motor Speed<br />RT<br />Reaction<br />Time<br />R9<br />Rate-of-test<br />Taking *<br />P<br />Perceptual<br />Speed *<br />MT<br />Movement<br />Time<br /><ul><li> Speed of Limb Movement (R3)
  137. 137. Wrist-finger Speed (P5)
  138. 138. Speed of Articulation (PT)
  139. 139. Speed of Writing (WS) ****
  140. 140. Numerical Fluency (N)
  141. 141. Speed of Reasoning (RE) **
  142. 142. Reading Speed (RS) ***
  143. 143. Pattern Recognition (Ppr)
  144. 144. Scanning (Ps)
  145. 145. Memory (Pm)
  146. 146. Complex (Pc)
  147. 147. Simple Reaction Time (R1)
  148. 148. Choice Reaction Time (R2)
  149. 149. Semantic Processing Speed (R4)
  150. 150. Mental Comparison Speed (R7)
  151. 151. Static Strength (P3)
  152. 152. Multilimb Coordination (P6)
  153. 153. Finger Dexterity (P2)
  154. 154. Manual Dexterity (P1)
  155. 155. Arm-hand Steadiness (P7)
  156. 156. Control Precision (P8)
  157. 157. Aiming (AI)</li></ul>[ Narrow P abilities suggested by Ackerman et al. (2002) ] <br />* Carroll classified P and R9 as narrow abilities<br /> under Gs/Gv and Gt, respectively<br /> ** Classified as speed and level (Gf) ability by Carroll<br /> *** Classified as a speed and level (Gc) ability by Carroll<br /> Also classified under Grw by the current author<br /> **** Classified as Psychomotor Ability by Carroll. Also <br /> classified under Grw by current author<br />Figure 2: Hypothesized speed hierarchy based on integration of Carroll (1993) speed abilities with recent research<br /> (Ackerman, Beier & Boyle, 2002; O’Connor & Burns, 2003; McGrew & Woodcock, 2001; Roberts & Stankov,<br /> 1998; Stankov, 2000; Stankov & Roberts, 1997)<br />Integrate proposed g-speed hierarchy (McGrew & Evans, 2004; McGrew, 2005)<br />
  158. 158. Alternative Model 2b<br />g – speed ?<br />.93<br />.99<br />1.0<br />.86<br />g<br />.36<br />1.0<br />Type I cognitive processing<br />(Cognitive efficiency):<br />More automatic & effortless<br />Cog. knowledge domains/systems<br />(product/content abilities) <br />Lang/linguistic./symbolic abilities<br />Type II cognitive processing:<br />More cognitively controlled & deliberate <br />Cognitive operations<br />(process/operations/analytic/rule-based abilities) figural-spatial, lower-linguistic abilities<br />Gs<br />(Cognitive speed)<br />.89<br />.76<br />.91<br />.85<br />1.0<br />.83<br />.82<br />.64<br />.50<br />.60<br />.58<br />.41<br />.52<br />Gs (Grw)<br />.58<br />Gsm<br />Gv<br />Gs (Gv)<br />Gs (Gq)<br />Gs (Gc)<br />.67<br />Gc<br />Gq<br />Ga<br />Glr<br />Gf<br />Grw<br />First order measurement model and other lower-order latent factors (below smallest oval latent factors) omitted for readability purposes. Thicker path arrow with bold font 1.0 parameter designates path that had to be constrained (fixed) to 1.0<br />
  159. 159. f8<br />r12<br />2<br />8<br />.<br />PICVOCER<br />.<br />7<br />PicVoc<br />4<br />r13<br />4<br />f1<br />PICVOCOR<br />9<br />.<br />r0<br />.<br />9<br />4<br />ANLSYNER<br />6<br />9<br />.<br />r14<br />GENINFOR<br />AnlSyn<br />7<br />GenInf<br />9<br />.<br />9<br />5<br />.<br />r1<br />4<br />9<br />ANLSYNOR<br />.<br />r15<br />GENINFER<br />f9<br />Gc<br />f2<br />r16<br />.<br />0<br />9<br />9<br />8<br />.<br />r2<br />ACKNOWOR<br />.<br />CONFRMER<br />9<br />5<br />AcdKnw<br />.<br />9<br />1<br />ConFrm<br />r17<br />ACKNOWER<br />r3<br />5<br />9<br />f10<br />.<br />.<br />CONFRMOR<br />7<br />r18<br />7<br />.<br />1<br />9<br />2<br />.<br />1<br />ORLVOCER<br />OrlVoc<br />.<br />9<br />2<br />f3<br />r19<br />r4<br />Gf<br />ORLVOCOR<br />.<br />9<br />4<br />NUMSERER<br />f11<br />r20<br />NumSer<br />5<br />1<br />8<br />.<br />2<br />VERBANLER<br />.<br />.<br />r5<br />9<br />VrbAnl<br />9<br />4<br />NUMSEROR<br />9<br />.<br />r21<br />VERBANLOR<br />.<br />9<br />0<br />3<br />7<br />f4<br />.<br />f12<br />Gf<br />.<br />9<br />r6<br />5<br />f14<br />NUMMATER<br />(lang)<br />r22<br />NumMat<br />9<br />8<br />.<br />SNDAWRER<br />r7<br />SndAwr<br />f13<br />4<br />9<br />f5<br />NUMMATOR<br />.<br />r23<br />SNDAWROR<br />.<br />8<br />8<br />r8<br />.<br />r24<br />6<br />APPROBER<br />5<br />AppPrb<br />0<br />9<br />UNDDIRER<br />.<br />Gq<br />r9<br />r25<br />UndDir<br />APPROBOR<br />f6<br />UNDDIROR<br />3<br />9<br />r10<br />.<br />.<br />8<br />8<br />CALCER<br />f7<br />f15<br />Calc<br />r11<br />CALCOR<br />7<br />8<br />.<br />Gf sub-abilities differentiated by content/stimulus features (Wilhelm model)<br />Additional dual-indicator modeling of WJ III data in other domains (e.g., Gsm, Glr, Ga, Gv, Gq, Grw)<br />f16<br />.<br />5<br />f18<br />8<br />Gf<br />(vis)<br />2<br />.<br />9<br />3<br />.<br />3<br />8<br />8<br />.<br />.<br />9<br />2<br />f19<br />.<br />9<br />g<br />9<br />3<br />9<br />.<br />.<br />9<br />4<br />8<br />7<br />.<br />Gf<br />.<br />9<br />6<br />.<br />(qnt)<br />8<br />9<br />.<br />5<br />9<br />6<br />3<br />.<br />f17<br />.<br />9<br />7<br />6<br />9<br />.<br />.<br />9<br />6<br />
  160. 160. Reconcile and integrate Johnson & Bouchard VPR (Verbal-Perceptual-Image Rotation) psychometric model of intelligence with working CHC model<br />
  161. 161. Integrate and conceptualize working model within information processing models<br />
  162. 162. Note: Ovals represent<br />latent factors. Rectangles represent manifest measures (tests). Single-headed arrows to tests from ovals designate factor loadings. Single headed arrows between ovals represent causal paths (effects). Test and factor residuals omitted for readability purposes.<br />Visual Matching<br />Mem for Sentences<br />.78<br />.78<br />Decision Speed<br />.49<br />.66<br />MS<br />Gs<br />Mem for Words<br />.75<br />.81<br />Cross Out<br />.80<br />.27<br />Aud Working Mem<br />.72<br />MW<br />Numbers Reversed<br />.72<br />Block Rotation<br /> .07<br />.53<br />.07<br />Verbal Comp<br />Spatial Relations<br />Picture Recognition<br />.69<br />Gv<br />.94<br />.47<br /> .82<br />Oral Comp<br />Memory for Names<br />.74<br />Gc<br />.83<br />.88<br />General Information<br />.87<br />.59<br />Retrieval Fluency<br />Analysis-Synthesis<br />.50<br />.92<br />g<br />Glr<br />.74<br />Del Recall-VAL<br />.69<br />.95<br />Concept Formation<br />.72<br />.78<br />Gf<br />76 % of g variance explained<br />.77<br />.78<br />Vis-Aud Lrng (VAL)<br />Numerical Reas<br />Sound Blending<br />Incomplete Words<br />.74<br />.58<br />Ga<br />Figure 4: WJ III CHC information processing  g causal model (ages 14-19)<br />.40<br />Sound Patterns<br />Cognitive Efficiency<br />
  163. 163.
  164. 164. And…..the state-of-the art research being conducted on working memory<br />I particularly favor the models and research of: <br />Conway, Engle and Kane group– Human working memory lab – Princeton, NJ.<br /><ul><li>Controlled executive attention model</li></ul>Torkel Klingberg group - Karolinska Institute-Stockholm Brain Institute<br />
  165. 165. Integrate and conceptualize working model within dual-processing neuro-cognitive research and models<br />
  166. 166. Integrate working model with Haier and colleagues parieto-frontal integration theory (P-FIT)<br />
  167. 167. P-FIT model<br />
  168. 168. P-FIT model researchers are mapping brain areas to CHC domain constructs<br />
  169. 169. Gc<br />Gv<br />
  170. 170. Timescales of temporal processing<br />(Mauk & Buonomano, 2004)<br />Humans process<br />temporal information over scales of at least 10-12 orders of magnitude that have been categorized into 3-4 major timescale groups<br />
  171. 171. Research suggests common dopamine link (e.g., dopaminergic disorders)<br />Mental Timing Research:<br />Has been implicated as important in human learning and understanding a variety of clinical disorders. Examples include:<br /><ul><li>Parkinson’s
  172. 172. Huntington’s
  173. 173. Schizophrenia
  174. 174. ADHD
  175. 175. Reading development and disorders (dyslexia/reading disabilities)
  176. 176. Speech and language development and related disorders
  177. 177. Analogy – auditory processing of Morse code
  178. 178. Musical abilities and performance
  179. 179. Motor timing disorders
  180. 180. Aspergers???</li></ul>(See IQ Brain<br />Clock EWOK<br />for research)<br />
  181. 181. Integrate working model with temporal g (brain clock) research<br />Temporal information processing models (Creelman, 1962; Gibbon, 1991; Rammsayer & Ulrich, 2001; Treisman et al., 1990; see Grondin, 2001 for review) are based on the central assumption ofneural oscilliations(note – same central feature of Jensen’s neural efficiency theory of g) as a major determinant of timing performance.<br />The higher the frequency (higher speed) of neural oscillations the finer the temporal resolution of the internal clock = greater timing accuracy (Rammsayer & Brandler; 2007)<br />
  182. 182. Temporal g ?<br />Analyses suggested a unitary timing mechanism, referred to as temporal g. <br />Performance on temporal information processing provided a more valid predictor of psychometric g than traditional reaction time measures<br />r (with psychometric g) = .56 (temporal g) vs .34 (reaction time g)<br />Findings suggest that temporal resolution capacity of the brain (as assessed with psychophysical temporal tasks) reflects aspects of neural efficiency associated with general intelligence.<br />Rammsayer & Brandler (2007)<br />
  183. 183. Two primary mental timing circuits<br />(Buhusi & Meck, 2005; Lewis & Miall, 2006)<br />Automatictiming system <br /><ul><li>Works in the millisecond range
  184. 184. Discrete-event (discontinuous) timing,</li></ul> esp. movement/motor tasks<br /><ul><li>Involves the cerebellum</li></ul>Cognitively-controlled timing system <br /><ul><li>Continuous-event timing
  185. 185. Requires attention and involvement of</li></ul>working memory<br /><ul><li>Involves the basal ganglia and related cortical structures</li></ul>It is the “constellation of task characteristics that dictate which timing “circuits” of brain “systems”are invoked in a particular task performance (Lewis & Miall, 2006)<br />
  186. 186. In conclusion.....<br />
  187. 187.
  188. 188. “Intelligent” testing and interpretation<br />requires…knowing thy instruments<br />Neuropsych. interpretation<br />Error variance (reliability)<br />External criterion relevance<br />Uniqueness (specificity)<br />g loading<br />Degree of cognitive complexity<br />CHC Ability factor classifications<br />Degree of cultural loading<br />Degree of linguistic demand<br />Metric scale<br />Information processing & stimulus/response characteristics<br />Ability domain cohesion<br />

×