SlideShare a Scribd company logo
1 of 11
Download to read offline
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
297
IMAGE COMPRESSION BY EZW COMBINING HUFFMAN AND
ARITHMETIC ENCODER
K.P.Paradeshi
Associate Professor, Department of Electronics Engineering, PVPIT,
Budhgaon,State-Maharashtra
ABSTRACT
The objective of an image compression algorithm is to exploit the redundancy in an
image such that a smaller number of bits can be used to represent the image while
maintaining an “acceptable” visual quality for the decompressed image. The embedded zero
tree wavelet algorithms (EZW) is a simple, yet remarkably effective, image compression
algorithm, having the property that the bits in the bit stream are generated in order of
importance, yielding a fully embedded code. EZW is computationally very fast and among
the best image compression algorithm known today. This paper proposes a technique for
image compression which uses the Wavelet-based Image Coding in combination with
Huffman and Arithmetic encoder for further compression. Implementation of Huffman
coding followed by arithmetic compression gives another 15% extra compression ratio.
Key Words: Image Compression, DWT, Embedded Zero tree Wavelet (EZW), Huffman
Encoder, Arithmetic Encoder.
I. INTRODUCTION
A. Introduction
Image compression can improve the performance of the digital systems by reducing
time and cost in image storage and transmission without significant reduction of the image
quality. Image compression is very important in many applications, especially for progressive
transmission, image browsing and multimedia applications. The whole aim is to obtain the
best image quality and yet occupy less space. Embedded zero tree wavelet compression
(EZW) is a kind of image compression that can realize this goal. EZW algorithm is fairly
general and performs remarkably well with most types of images. Also, it is applicable to
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING
& TECHNOLOGY (IJCET)
ISSN 0976 – 6367(Print)
ISSN 0976 – 6375(Online)
Volume 4, Issue 3, May-June (2013), pp. 297-307
© IAEME: www.iaeme.com/ijcet.asp
Journal Impact Factor (2013): 6.1302 (Calculated by GISI)
www.jifactor.com
IJCET
© I A E M E
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
298
transmission over a noisy channel. Discrete wavelet transform (DWT) become a cutting edge
technology in image data compression. Image compression is typically comprised of three
basic steps. Firstly, the image is transformed into wavelet coefficients which are then
quantized in a quantizer and finally threshold which makes the coefficient smaller than a
chosen threshold value (zero) obtained from the quantizer. As a result, some bits are reduced
producing an output bit stream [2].
The main contribution of EZW encoding with Huffman and Arithmetic Encoder is
that it visually improves the compression of an image by increasing the decomposition level 8
as compared to the paper Shapiro, J. M. R. B., 1993, “Embedded Image Coding Using
Zerotrees of Wavelet Coefficients”[1]. decoder “where” the few non-zeros are!!! Significance
map (SM): binary array indicating location of Zero/non zero Coefficients. Typically requires
a large fraction of bit budget to specify the SM.Wavelets provide a structure (zerotrees) to the
SM that yields efficient coding
B. WAVELET TRANSFORMATION OF IMAGES
Wavelets [7] are mathematical functions that decompose data into different frequency
components, and then study each component with a resolution matched to its scale. They
have advantages over traditional Fourier methods [4] in analyzing physical situations where
the signal contains discontinuities and sharp spikes. Wavelets were developed independently
in the fields of mathematics, quantum physics, electrical engineering, and seismic geology.
Interchanges between these fields during the last ten years have led to many new wavelet
applications such as image compression, turbulence, human vision, radar, and earthquake
prediction.
The wavelet transformation [7] is a mathematical tool for decomposition. The wavelet
transform is identical to a hierarchical sub band filtering system [3], where the sub bands are
logarithmically spaced in frequency. The basic idea of the DWT for a two-dimensional image
is described as follows. An image is first decomposed into four parts based on frequency sub
bands, by critically sub sampling horizontal and vertical channels using sub band filters and
named as Low-Low (LL), Low-High (LH), High- Low (HL), and High- High (HH) sub bands
as shown in figure 1.
Figure 1: Wavelet Transform
Each level has various bands information such as low–low, low–high, high–low, and
high–high frequency bands. Furthermore, from these DWT coefficients, the original image
can be reconstructed. This reconstruction process is called the inverse DWT (IDWT). If C
[m, n] represents an image, the DWT and IDWT on each dimension and separately
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
299
C. Why Wavelets?
Traditional DCT & sub band coding: trends “obscure” anomalies that carry
information. E.g., edges get spread, yielding many non-zero coefficients to be coded.
Wavelets are better at localizing edges and other anomalies Yields a few non-zero
coefficients & many zero coefficients Difficulty: telling the decoder “where” the few non-
zeros are!!! Significance map (SM): binary array indicating location of Zero/non zero
Coefficients. Typically requires a large fraction of bit budget to specify the SM.Wavelets
provide a structure (zero trees) to the SM that yields efficient coding
D. EZW ENCODING
EZW encoder was originally designed to operate on images (2D-signals) but it can
also be used on other dimensional signals. It is based on progressive encoding to compress an
image into a bit stream with increasing accuracy. This means that when more bits are added
to the stream, the decoded image will contain more detail, a property similar to JPEG
encoded images. Using an embedded coding algorithm, an encoder can terminate the
encoding at any point thereby allowing a target rate or target accuracy to be met exactly [5,
6]. The EZW algorithm is based on four key concepts: 1) a discrete wavelet transform or
hierarchical sub band decomposition, 2) prediction of the absence of significant formation
across scales by exploiting the self-similarity inherent in images, 3) entropy-coded successive
approximation quantization, and 4) universal lossless data compression which is achieved via
adaptive Huffman encoding [8].
The EZW encoder is based on two important observations
1. Natural images in general have a low pass spectrum. When an image is wavelet
transformed the energy in the sub bands decreases as the scale decreases (low scale means
high resolution), so the wavelet coefficients will, on average, be smaller in the higher sub
bands than in the lower sub bands. This shows that progressive encoding is a very natural
choice for compressing wavelet transformed images, since the higher sub bands only add
detail [8].
2. Large wavelet coefficients are more important than small wavelet coefficients.
These two observations are exploited by encoding the wavelet coefficients in
decreasing order, in several passes. For every pass a threshold is chosen against which all the
wavelet coefficients are measured. If a wavelet coefficient is larger than the threshold it is
encoded and removed from the image, if it is smaller it is left for the next pass. When all the
wavelet coefficients have been visited the threshold is lowered and the image is scanned
again to add more detail to the already encoded image. This process is repeated until all the
wavelet coefficients have been encoded [7].
E. Concept of Zerotree
A wavelet transform transforms a signal from the time domain to the joint time-scale
domain. i.e. the wavelet coefficients are two-dimensional. To compress the transformed
signal not only the coefficient values, but also their position in time has to be coded. When
the signal is an image then the position in time is better expressed as the position in space.
After wavelet transforming an image it can be represented using trees because of the sub
sampling that is performed in the transform. A coefficient in a lower sub band can be thought
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
300
of as having four descendants in the next higher sub band as shown in Figure 2 the four
descendants each also have four descendants in the next higher sub band, which gives a quad
tree, with every root having four leafs [9].
A zero tree is defined as a quad-tree of which all nodes are equal to or smaller than
the root and the root is smaller than the threshold against which the wavelet coefficients are
currently being measured. The tree is coded with a single symbol and reconstructed by the
decoder as a quad-tree filled with zeroes [10]. The EZW encoder codes the zero tree based on
the observation that wavelet coefficients decrease with scale. In a zero tree all the coefficients
in a quad tree are smaller than the threshold if the root is smaller than this threshold. Under
this case the whole tree can be coded with a single zero tree (T) symbol [11].
Figure 2: The relation between wavelet coefficients in sub bands as quad tree
Raster Scan Morton Scan
Figure 3: Different scanning patterns for scanning wavelet coefficients
A scanning of the coefficient is performed in such a way that no child node is scanned
before its parent. For an N scale transform, the scan begins at the lowest frequency sub band,
denoted as LLN, and scans sub bands HLN, LHN, and HHN, at which point it moves on to
scale N-1 etc.[12] The two such scanning patterns for a three-scale pyramid can be seen in
Figure 2. Note that each coefficient within a given sub band is scanned before any coefficient
in the next sub band Given a threshold level T to determine whether a coefficient is
significant, a coefficient x is said to be an element of a zero tree for threshold T if itself and
all of its descendents are insignificant with respect to T. An element of a zero tree for
threshold T is a zero tree root if it is not the descendents of a previously found zero tree root
for threshold T, i.e., it is not predictably insignificant from the discovery of a zero tree root at
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
301
a coarser scale at the same threshold[13]. A zero tree root is encoded with a special symbol
indicating that the insignificance of the coefficient at finer scales is completely predictable.
The significance map can be efficiently represented as a string of symbols from a 3-symbol
alphabet which is then entropy encoded [14].
F. HUFFMAN CODING
Huffman coding is an entropy encoding algorithm used for lossless data compression.
The term refers to the use of a variable-length code table for encoding a source symbol (such
as a character in a file) where the variable length code table has been derived in a particular
way based on the estimated probability of occurrence for each possible value of the source
symbol. It uses a specific method for choosing the representation for each symbol, resulting
in a prefix code that expresses the most common source symbols using shorter strings of bits
than are used for less common source symbols.
The Huffman algorithm is based on statistical coding, which means that the
probability of a symbol has a direct bearing on the length of its representation. The more
probable the occurrence of a symbol is, the shorter will be its bit-size representation. In any
file, certain characters are used more than others. Using binary representation, the number of
bits required to represent each character depends upon the number of characters that have to
be represented. Using one bit we can represent two characters, i.e., 0 represents the first
character and 1 represents the second character. Using two bits we can represent four
characters, and so on[10].
Unlike ASCII code, which is a fixed-length code using seven bits per character,
Huffman compression is a variable-length coding system that assigns smaller codes for more
frequently used characters and larger codes for less frequently used characters in order to
reduce the size of files being compressed and transferred[15].
G. ARITHMATIC CODING
Arithmetic coding bypasses the idea of replacing an input symbol with a specific
code. It replaces a stream of input symbols with a single floating-point output number. More
bits are needed in the output number for longer, complex messages. This concept has been
known for some time, but only recently were practical methods found to implement
arithmetic coding on computers with fixed-sized registers.
The output from an arithmetic coding process is a single number less than 1 and
greater than or equal to 0. This single number can be uniquely decoded to create the exact
stream of symbols that went into its construction [16].
I.IMPLEMENTATION
A. wavelet basis choosing
Many issues relating to the choice of filter bank for image compression remain
unresolved. Constraints on filter bank include perfect reconstruction, finite-length, and the
regularity requirement that the iterated low pass filters involved converge to continuous
functions. According to [17], it shows that the bi orthogonal wavelet filter banks have a very
good performance for wavelet image compression. They have good localization properties as
well as their symmetry allows for simple edge treatments. They also produce good results
empirically since the original paper on EZW is using this wavelet basis. Moreover, using
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
302
properly scaled coefficients, the transformation matrix for a discrete wavelet transforms
obtained using these filters is so close to unitary that it can be treated as unitary for the
purpose of lossy compression.
B. EZW coding algorithm
Coding the wavelet coefficients is performed by determining two lists of coefficients:
1. The dominant list D contains information concerning significance of coefficients, which
will be coded using Huffman encoding followed by arithmetic coding for further compression
2. The significant list S contains the amplitude values of the significant coefficients, which
will undergo uniform scalar quantization followed by Huffman arithmetic coding.
Figure 4: Example of decomposition to three resolutions for an 8*8 matrix
Significance test
The wavelet transform coefficients are scanned for the path as shown in the fig below.
In our implemented method, we used Mortan scan as show in Figure 5, which is more
accurate and produces standard results
Figure 5: Mortan scanning scheme in EZW algorithm
Each coefficient is assigned a significance symbols (P, N, Z, T), by comparing with the actual
threshold.
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
303
1. P (significance and positive): if the absolute value of the coefficient is higher than
the threshold T and is positive.
2. N (significance and positive): if the absolute value of the coefficient is higher than
the threshold T and is negative.
3. T (zerotree): if the value of the coefficient is lower than the threshold T and has only
insignificant descendants4. Z (isolated zero): if the absolute value of the coefficient
is lower than the threshold T and has one or more significant descendents.
The insignificant coefficients of the last sub bands, which do not accept descendents
and are not themselves descendents of a zerotree, are also considered to be zero tree.The
significance symbols are then placed in a list D which is subjected to Huffman encoding
followed by Arithmetic encoding.The dominant list and the significance list are shown
below: The dominant list and the significance list are shown below:
D1: P N Z T P T T T T Z T T T T T T T P T T
S1: 1 0 1 0
D2: Z T N P T T T T T
S2: 1 0 0 1 1 0
C. Huffman coding algorithm
The steps involved in encoding dominant list D is as follows:
5. In the dominant list since the probability of occurrence of the symbol T is more when
compared to others, this symbol should be coded with the less number of bits.
6. The other symbols probability of occurrence are less when compared to the symbol T, they
should be coded with more number of bits.
7. After encoding all the symbols with binary digits, a separator is appended to the end of the
encoded bit stream to indicate the end of the stream.
For e.g.:
In the said algorithm to encode the symbols P, N, Z and T we used the binary bits as follows:
P is encoded as 1110
N is encoded as 110
Z is encoded as 10
Since the probability of occurrence is less when compared to T.
T is encoded as 0 (since the probability of occurrence is more when compared to other bits)
Then we insert a separator bits i.e. a stream of 1 s .Here
We used 11111 to indicate the end of the bit stream
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
304
8. After getting bit stream, it converts into decimal number and then converts decimal number
into character to get resultant byte stream
For e.g. 65 coded as A
D. Arithmetic coding algorithm
9. The system model, T, keeps record of the symbols that have been encoded. Based on this
table the probability of each symbol is estimated. Probability for symbol m is: (T (m+1)-T
(m+2))/T 10. Once character probabilities are known, individual symbols need to be assigned
a range along a “probability line,” nominally 0 to 1. It doesn’t matter which characters are
assigned which segment of the range, as long as it is done in the same manner by both the
encoder and the decoder. Each character is assigned the portion of the 0 to 1 range that
corresponds to its probability of appearance.
For e.g. Character Probability Range
A 1/10 0.10
II. EXPERIMENTS AND RESULTS
A. performance of EZW algorithm
Firstly, original image is applied to the compression program, EZW encoded image is
obtain, which is further compressed by combining Huffman and Arithmetic. To reconstruct
compressed image, compressed image is applied to decompression program, by which EZW
decoded image is obtained. Compression Ratio (CR) and Peak-Signal-to-Noise Ratio (PSNR)
are obtained for the original and reconstructed images. In the experiment the original image
“Lena.bmp” having size 256 x 256 (65,536) Bytes). The different statistical values of the
image Lena.jpg for Various Thresholds are summarized in the table.
Image: Lena.bmp Image Size: 256x256
Parameter TH=5 TH=10 TH=20 TH=30 TH=60
Original File Size(byte) 66614 66614 66614 66614 66614
Compressed File Size(byte) 17852 10075 5181 5181 2328
Compression Ratio(CR) 3.4 5.9 11.5 11.5 25.9
Compression Ratio 3.7 6.6 12.9 12.9 28.6
Bits Per Pixel(Bpp) 2.40 1.37 0.71 0.71 0.31
Peak-Signal-to–noise Ratio
(PSNR)(db)
27.79 27.85 27.65 26.61 26.21
Encoding Time (sec) 127.8 87.82 60.19 52.91 27.72
Decoding Time (sec) 334.1 293.5 152.15 140.7 90.63
Total Time(sec) 462.3 353.6 212.34 193.6 118.3
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
305
Discussion: As mentioned previously, one of the advantages of EZW is that it encodes the
image from lossy to lossless in one algorithm. People at the receiver can choose the quality of
the image by control the bit budget. As the bit rate increases, you will get more detailed
information and of course the image quality becomes better and better. Figure 6 shows this
procedure. You can clearly observe some block effect at the lower bit budget; this is due to
our implementation in MATLAB which is very slow doing large number of for loop. Figure 7
shows the threshold vs. CR (compression ratio) curve.
Figure.6 Decoded image given different bit budget.
Left top: highest bit rate (bpp), Right bottom: lowest bit rate (bpp)
Figure 7 Thresholds vs. CR
0
5
10
15
20
25
30
35
5 10 20 30 60
C
R
Threshold
Threshold Vs CR
Huffman encoder
Combine Huffman and
Arithmatic encoder
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
306
The curves of Threshold Verses CR have been calculated and depicted in the figure.7.
In which Image encoded using EZW algorithm for 8 level decomposition and compressed
using combining Huffman and Arithmetic gives better BPP and PSNR values than Image
Compressed directly using Huffman Encoder.
III. CONCLUSION
A technique for image compression which uses the Wavelet based Image Coding in
combining Huffman and Arithmetic encoding is proposed here. This approach utilizes zero
tree structure of wavelet coefficients at decomposition level 8 with combining Huffman and
Arithmetic encoder is very effectively, which results in higher compression ratio . The
algorithm is tested on different images , and it is seen that the results obtained by Image
encoded using EZW algorithm and compressed using combining Huffman and Arithmetic
are consistently better than these obtained by Image Compressed directly using Huffman
Encoder. It is also observed that the results are better than these reported Earlier.
Furthermore, since no training of any kind is required, the algorithm is fairly general and
performs remarkably well with most types of images.
REFERENCES
[1] Still Image Compression by Combining EZW Encoding with Huffman Encoder ,Janaki. R
Dr.Tamilarasi Assistant Professor ,N.K.R. Govt. Arts College for Women, Namakkal-
637 001. Dr.Tamilarasi.A, Professor & Head Department of MCA, Kongu Engineering
College, Perundurai - 638 052.
[2] K.P.Soman,K.I.Ramachandran “Insight into Wavelets from theory to practice”. Prentice-
Hall of India Private Limited.
[3] K.Sayood, “Introduction to Data Compression”, 2nd edition, Academic Press, Morgan
Kaufman Publishers, 2000.
[4] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Pearson Education,
Englewood Cliffs,2002 .
[5] Creusere, C.D., A New Method of Robust Image Compression Based on the Embedded
Zerotree Wavelet Algorithm, IEEE Transactions on Image Processing, 6, No. 10 (1997), p.
1436-1442.
[6] Shapiro, J. M., Embedded Image Coding Using Zerotrees of Wavelet Cefficients, IEEE
Transactions on Signal Processing, 41, No. 12 (1993), p. 3445-3462.
[7] David Salomon, Data Compression- The Complete Reference, Springer,2004, 3rd edition.
[8] S. D. Servetto, K. Ramchandran, and M. T. Orchard, “Image coding based on a
morphological representation of wavelet data”, IEEE Trans.Image Processing, vol. 8, pp.
1161-1174, Sept. 1999.
[9] Vinay U. Kale & Nikkoo N. Khalsa,International Journal of Computer Science &
Communication “Performance Evaluation of Various Wavelets for Image Compression of
Natural and Artificia Images”,Vol. 1, No. 1, January-June 2010, pp. 179-184,
[10] Tripatjot Singh, Sanjeev Chopra, Harmanpreet Kaur, Amandeep Kaur,Image
Compression Using Wavelet and Wavelet Packet Transformation, IJCST Vol.1, Issue 1,
September 2010.
[11] Kharate G.K., Ghatol A. A. and Rege P. P., “ Image Compression Using Wavelet
Packet Tree,” ICGSTGVIP
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-
6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME
307
[12] Uytterhoeven G., “Wavelets: Software and Applications”, U. Leuven Celestijnenlaan,
Department of Computer Science, Belgium, 1999.
[13] Jerome M. Shapiro,” Embedded Image Coding Using Zerotrees of Wavelet
Coefficients,” IEE Transactions on Signal Processing, December 1993.
[14] Lotfi A. A., Hazrati M. M., Sharei M., Saeb Azhang, “ Wavelet Lossy Image
Compression on Primitive FPGA”, IEEE, pp. 445-448, 2005.
[15] Kharate G. K., Patil V. H., “Color Image Compression Based On Wavelet Packet Best
Tree,” IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3,
March 2010.
[16] chapter 5 of "The Data Compression Book" by Mark Nelson.
[17] John D. Villasenor, Benjamin Belzer, and Judy Liao, Wavelet filter Evaluation for
Image Compression, IEEE Transaction on Image Processing, Vol 4, NO 8, August 1995.
pp1053-1060.
[18] B.K.N.Srinivasa Rao and P.Sowmya, “Architectural Implementation of Video
Compression Through Wavelet Transform Coding and EZW Coding”, International Journal
of Electronics and Communication Engineering & Technology (IJECET), Volume 3, Issue 3,
2012, pp. 202 - 210, ISSN Print: 0976- 6464, ISSN Online: 0976 –6472.
[19] Pardeep Singh, Nivedita and Sugandha Sharma, “A Comparative Study: Block
Truncation Coding, Wavelet, Embedded Zerotree and Fractal Image Compression on Color
Image”, International Journal of Electronics and Communication Engineering & Technology
(IJECET), Volume 3, Issue 2, 2012, pp. 10 - 21, ISSN Print: 0976- 6464, ISSN Online:
0976 –6472.
[20] S.Anandanarayanan and Dr.S.K.Srivatsa, “A High Performance Novel Image
Compression Technique using Huffman Coding with Edge Dection”, International Journal of
Computer Engineering & Technology (IJCET), Volume 4, Issue 2, 2013, pp. 17 - 22,
ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375.

More Related Content

What's hot

Ax31139148
Ax31139148Ax31139148
Ax31139148IJMER
 
DETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGS
DETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGSDETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGS
DETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGScscpconf
 
A High Performance Modified SPIHT for Scalable Image Compression
A High Performance Modified SPIHT for Scalable Image CompressionA High Performance Modified SPIHT for Scalable Image Compression
A High Performance Modified SPIHT for Scalable Image CompressionCSCJournals
 
Image Compression using Combined Approach of EZW and LZW
Image Compression using Combined Approach of EZW and LZWImage Compression using Combined Approach of EZW and LZW
Image Compression using Combined Approach of EZW and LZWIJERA Editor
 
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGES
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGESAUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGES
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGEScsitconf
 
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGES
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGESAUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGES
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGEScscpconf
 
An Efficient Block Matching Algorithm Using Logical Image
An Efficient Block Matching Algorithm Using Logical ImageAn Efficient Block Matching Algorithm Using Logical Image
An Efficient Block Matching Algorithm Using Logical ImageIJERA Editor
 
DETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGS
DETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGSDETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGS
DETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGScsandit
 
Content Based Image Retrieval Using 2-D Discrete Wavelet Transform
Content Based Image Retrieval Using 2-D Discrete Wavelet TransformContent Based Image Retrieval Using 2-D Discrete Wavelet Transform
Content Based Image Retrieval Using 2-D Discrete Wavelet TransformIOSR Journals
 
IMAGE AUTHENTICATION THROUGH ZTRANSFORM WITH LOW ENERGY AND BANDWIDTH (IAZT)
IMAGE AUTHENTICATION THROUGH ZTRANSFORM WITH LOW ENERGY AND BANDWIDTH (IAZT)IMAGE AUTHENTICATION THROUGH ZTRANSFORM WITH LOW ENERGY AND BANDWIDTH (IAZT)
IMAGE AUTHENTICATION THROUGH ZTRANSFORM WITH LOW ENERGY AND BANDWIDTH (IAZT)IJNSA Journal
 
Compressed sensing applications in image processing & communication (1)
Compressed sensing applications in image processing & communication (1)Compressed sensing applications in image processing & communication (1)
Compressed sensing applications in image processing & communication (1)Mayur Sevak
 
A NEW ALGORITHM FOR DATA HIDING USING OPAP AND MULTIPLE KEYS
A NEW ALGORITHM FOR DATA HIDING USING OPAP AND MULTIPLE KEYSA NEW ALGORITHM FOR DATA HIDING USING OPAP AND MULTIPLE KEYS
A NEW ALGORITHM FOR DATA HIDING USING OPAP AND MULTIPLE KEYSEditor IJMTER
 
Satellite image contrast enhancement using discrete wavelet transform
Satellite image contrast enhancement using discrete wavelet transformSatellite image contrast enhancement using discrete wavelet transform
Satellite image contrast enhancement using discrete wavelet transformHarishwar Reddy
 
Deferred Pixel Shading on the PLAYSTATION®3
Deferred Pixel Shading on the PLAYSTATION®3Deferred Pixel Shading on the PLAYSTATION®3
Deferred Pixel Shading on the PLAYSTATION®3Slide_N
 

What's hot (19)

Ax31139148
Ax31139148Ax31139148
Ax31139148
 
DETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGS
DETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGSDETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGS
DETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGS
 
ADAPTIVE CONTOURLET TRANSFORM AND WAVELET TRANSFORM BASED IMAGE STEGANOGRAPHY...
ADAPTIVE CONTOURLET TRANSFORM AND WAVELET TRANSFORM BASED IMAGE STEGANOGRAPHY...ADAPTIVE CONTOURLET TRANSFORM AND WAVELET TRANSFORM BASED IMAGE STEGANOGRAPHY...
ADAPTIVE CONTOURLET TRANSFORM AND WAVELET TRANSFORM BASED IMAGE STEGANOGRAPHY...
 
A High Performance Modified SPIHT for Scalable Image Compression
A High Performance Modified SPIHT for Scalable Image CompressionA High Performance Modified SPIHT for Scalable Image Compression
A High Performance Modified SPIHT for Scalable Image Compression
 
Image Compression using Combined Approach of EZW and LZW
Image Compression using Combined Approach of EZW and LZWImage Compression using Combined Approach of EZW and LZW
Image Compression using Combined Approach of EZW and LZW
 
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGES
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGESAUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGES
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGES
 
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGES
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGESAUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGES
AUTOMATIC THRESHOLDING TECHNIQUES FOR SAR IMAGES
 
An Efficient Block Matching Algorithm Using Logical Image
An Efficient Block Matching Algorithm Using Logical ImageAn Efficient Block Matching Algorithm Using Logical Image
An Efficient Block Matching Algorithm Using Logical Image
 
DETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGS
DETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGSDETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGS
DETECTION OF POWER-LINES IN COMPLEX NATURAL SURROUNDINGS
 
50120140501009
5012014050100950120140501009
50120140501009
 
Pixel Recursive Super Resolution. Google Brain
 Pixel Recursive Super Resolution.  Google Brain Pixel Recursive Super Resolution.  Google Brain
Pixel Recursive Super Resolution. Google Brain
 
Content Based Image Retrieval Using 2-D Discrete Wavelet Transform
Content Based Image Retrieval Using 2-D Discrete Wavelet TransformContent Based Image Retrieval Using 2-D Discrete Wavelet Transform
Content Based Image Retrieval Using 2-D Discrete Wavelet Transform
 
IMAGE AUTHENTICATION THROUGH ZTRANSFORM WITH LOW ENERGY AND BANDWIDTH (IAZT)
IMAGE AUTHENTICATION THROUGH ZTRANSFORM WITH LOW ENERGY AND BANDWIDTH (IAZT)IMAGE AUTHENTICATION THROUGH ZTRANSFORM WITH LOW ENERGY AND BANDWIDTH (IAZT)
IMAGE AUTHENTICATION THROUGH ZTRANSFORM WITH LOW ENERGY AND BANDWIDTH (IAZT)
 
Compressed sensing applications in image processing & communication (1)
Compressed sensing applications in image processing & communication (1)Compressed sensing applications in image processing & communication (1)
Compressed sensing applications in image processing & communication (1)
 
A NEW ALGORITHM FOR DATA HIDING USING OPAP AND MULTIPLE KEYS
A NEW ALGORITHM FOR DATA HIDING USING OPAP AND MULTIPLE KEYSA NEW ALGORITHM FOR DATA HIDING USING OPAP AND MULTIPLE KEYS
A NEW ALGORITHM FOR DATA HIDING USING OPAP AND MULTIPLE KEYS
 
Image compression using EZW encoding
Image compression using EZW encoding Image compression using EZW encoding
Image compression using EZW encoding
 
Satellite image contrast enhancement using discrete wavelet transform
Satellite image contrast enhancement using discrete wavelet transformSatellite image contrast enhancement using discrete wavelet transform
Satellite image contrast enhancement using discrete wavelet transform
 
Deferred Pixel Shading on the PLAYSTATION®3
Deferred Pixel Shading on the PLAYSTATION®3Deferred Pixel Shading on the PLAYSTATION®3
Deferred Pixel Shading on the PLAYSTATION®3
 
Mn3621372142
Mn3621372142Mn3621372142
Mn3621372142
 

Viewers also liked

Implementation of switching controller for the internet router
Implementation of switching controller for the internet routerImplementation of switching controller for the internet router
Implementation of switching controller for the internet routerIAEME Publication
 
Fingerprint identification technique
Fingerprint identification techniqueFingerprint identification technique
Fingerprint identification techniqueIAEME Publication
 
Castilla la mancha
Castilla la manchaCastilla la mancha
Castilla la manchaelanderson05
 
Design of a uhf band lna using active inductor with ffp noise cancelling
Design of a uhf band lna using active inductor with ffp noise cancellingDesign of a uhf band lna using active inductor with ffp noise cancelling
Design of a uhf band lna using active inductor with ffp noise cancellingIAEME Publication
 
INSTAGRAM SLIDES - NICECOTEDAZUR1
INSTAGRAM SLIDES - NICECOTEDAZUR1INSTAGRAM SLIDES - NICECOTEDAZUR1
INSTAGRAM SLIDES - NICECOTEDAZUR1Heinz Rainer
 
Structural behavior of reed evaluation of tensilestrength, elasticityand stress
Structural behavior of reed evaluation of tensilestrength, elasticityand stressStructural behavior of reed evaluation of tensilestrength, elasticityand stress
Structural behavior of reed evaluation of tensilestrength, elasticityand stressIAEME Publication
 
Overlapped clustering approach for maximizing the service reliability of
Overlapped clustering approach for maximizing the service reliability ofOverlapped clustering approach for maximizing the service reliability of
Overlapped clustering approach for maximizing the service reliability ofIAEME Publication
 

Viewers also liked (9)

Implementation of switching controller for the internet router
Implementation of switching controller for the internet routerImplementation of switching controller for the internet router
Implementation of switching controller for the internet router
 
Fingerprint identification technique
Fingerprint identification techniqueFingerprint identification technique
Fingerprint identification technique
 
Presen acad 4rt 13 14
Presen acad 4rt 13 14Presen acad 4rt 13 14
Presen acad 4rt 13 14
 
Castilla la mancha
Castilla la manchaCastilla la mancha
Castilla la mancha
 
Design of a uhf band lna using active inductor with ffp noise cancelling
Design of a uhf band lna using active inductor with ffp noise cancellingDesign of a uhf band lna using active inductor with ffp noise cancelling
Design of a uhf band lna using active inductor with ffp noise cancelling
 
Integració d’electrocardiògrafs en el s.i. hospitalari
Integració d’electrocardiògrafs en el s.i. hospitalariIntegració d’electrocardiògrafs en el s.i. hospitalari
Integració d’electrocardiògrafs en el s.i. hospitalari
 
INSTAGRAM SLIDES - NICECOTEDAZUR1
INSTAGRAM SLIDES - NICECOTEDAZUR1INSTAGRAM SLIDES - NICECOTEDAZUR1
INSTAGRAM SLIDES - NICECOTEDAZUR1
 
Structural behavior of reed evaluation of tensilestrength, elasticityand stress
Structural behavior of reed evaluation of tensilestrength, elasticityand stressStructural behavior of reed evaluation of tensilestrength, elasticityand stress
Structural behavior of reed evaluation of tensilestrength, elasticityand stress
 
Overlapped clustering approach for maximizing the service reliability of
Overlapped clustering approach for maximizing the service reliability ofOverlapped clustering approach for maximizing the service reliability of
Overlapped clustering approach for maximizing the service reliability of
 

Similar to Image compression by ezw combining huffman and arithmetic encoder

Image compression techniques by using wavelet transform
Image compression techniques by using wavelet transformImage compression techniques by using wavelet transform
Image compression techniques by using wavelet transformAlexander Decker
 
Modified weighted embedding method for image steganography
Modified  weighted embedding method for image steganographyModified  weighted embedding method for image steganography
Modified weighted embedding method for image steganographyIAEME Publication
 
Developing and comparing an encoding system using vector quantization &
Developing and comparing an encoding system using vector quantization &Developing and comparing an encoding system using vector quantization &
Developing and comparing an encoding system using vector quantization &IAEME Publication
 
Developing and comparing an encoding system using vector quantization &
Developing and comparing an encoding system using vector quantization &Developing and comparing an encoding system using vector quantization &
Developing and comparing an encoding system using vector quantization &IAEME Publication
 
Comparison of ezw and h.264 2
Comparison of ezw and h.264 2Comparison of ezw and h.264 2
Comparison of ezw and h.264 2IAEME Publication
 
Discrete wavelet transform using matlab
Discrete wavelet transform using matlabDiscrete wavelet transform using matlab
Discrete wavelet transform using matlabIAEME Publication
 
International Journal on Soft Computing ( IJSC )
International Journal on Soft Computing ( IJSC )International Journal on Soft Computing ( IJSC )
International Journal on Soft Computing ( IJSC )ijsc
 
Non standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded waveletsNon standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded waveletseSAT Publishing House
 
Non standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded waveletsNon standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded waveletseSAT Journals
 
Wavelet based Image Coding Schemes: A Recent Survey
Wavelet based Image Coding Schemes: A Recent Survey  Wavelet based Image Coding Schemes: A Recent Survey
Wavelet based Image Coding Schemes: A Recent Survey ijsc
 
Comparison and improvement of image compression
Comparison and improvement of image compressionComparison and improvement of image compression
Comparison and improvement of image compressionIAEME Publication
 
Comparison and improvement of image compression
Comparison and improvement of image compressionComparison and improvement of image compression
Comparison and improvement of image compressionIAEME Publication
 
Comparison and improvement of image compression
Comparison and improvement of image compressionComparison and improvement of image compression
Comparison and improvement of image compressionIAEME Publication
 
Hybrid compression based stationary wavelet transforms
Hybrid compression based stationary wavelet transformsHybrid compression based stationary wavelet transforms
Hybrid compression based stationary wavelet transformsOmar Ghazi
 

Similar to Image compression by ezw combining huffman and arithmetic encoder (20)

D017542937
D017542937D017542937
D017542937
 
Image compression techniques by using wavelet transform
Image compression techniques by using wavelet transformImage compression techniques by using wavelet transform
Image compression techniques by using wavelet transform
 
40120140505005 2
40120140505005 240120140505005 2
40120140505005 2
 
40120140505005
4012014050500540120140505005
40120140505005
 
40120140505005
4012014050500540120140505005
40120140505005
 
Modified weighted embedding method for image steganography
Modified  weighted embedding method for image steganographyModified  weighted embedding method for image steganography
Modified weighted embedding method for image steganography
 
Developing and comparing an encoding system using vector quantization &
Developing and comparing an encoding system using vector quantization &Developing and comparing an encoding system using vector quantization &
Developing and comparing an encoding system using vector quantization &
 
Developing and comparing an encoding system using vector quantization &
Developing and comparing an encoding system using vector quantization &Developing and comparing an encoding system using vector quantization &
Developing and comparing an encoding system using vector quantization &
 
I017535359
I017535359I017535359
I017535359
 
Comparison of ezw and h.264 2
Comparison of ezw and h.264 2Comparison of ezw and h.264 2
Comparison of ezw and h.264 2
 
Discrete wavelet transform using matlab
Discrete wavelet transform using matlabDiscrete wavelet transform using matlab
Discrete wavelet transform using matlab
 
International Journal on Soft Computing ( IJSC )
International Journal on Soft Computing ( IJSC )International Journal on Soft Computing ( IJSC )
International Journal on Soft Computing ( IJSC )
 
Non standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded waveletsNon standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded wavelets
 
Non standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded waveletsNon standard size image compression with reversible embedded wavelets
Non standard size image compression with reversible embedded wavelets
 
Wavelet based Image Coding Schemes: A Recent Survey
Wavelet based Image Coding Schemes: A Recent Survey  Wavelet based Image Coding Schemes: A Recent Survey
Wavelet based Image Coding Schemes: A Recent Survey
 
Comparison and improvement of image compression
Comparison and improvement of image compressionComparison and improvement of image compression
Comparison and improvement of image compression
 
Comparison and improvement of image compression
Comparison and improvement of image compressionComparison and improvement of image compression
Comparison and improvement of image compression
 
Comparison and improvement of image compression
Comparison and improvement of image compressionComparison and improvement of image compression
Comparison and improvement of image compression
 
Hybrid compression based stationary wavelet transforms
Hybrid compression based stationary wavelet transformsHybrid compression based stationary wavelet transforms
Hybrid compression based stationary wavelet transforms
 
145 153
145 153145 153
145 153
 

More from IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

More from IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Recently uploaded

Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 

Recently uploaded (20)

Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 

Image compression by ezw combining huffman and arithmetic encoder

  • 1. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 297 IMAGE COMPRESSION BY EZW COMBINING HUFFMAN AND ARITHMETIC ENCODER K.P.Paradeshi Associate Professor, Department of Electronics Engineering, PVPIT, Budhgaon,State-Maharashtra ABSTRACT The objective of an image compression algorithm is to exploit the redundancy in an image such that a smaller number of bits can be used to represent the image while maintaining an “acceptable” visual quality for the decompressed image. The embedded zero tree wavelet algorithms (EZW) is a simple, yet remarkably effective, image compression algorithm, having the property that the bits in the bit stream are generated in order of importance, yielding a fully embedded code. EZW is computationally very fast and among the best image compression algorithm known today. This paper proposes a technique for image compression which uses the Wavelet-based Image Coding in combination with Huffman and Arithmetic encoder for further compression. Implementation of Huffman coding followed by arithmetic compression gives another 15% extra compression ratio. Key Words: Image Compression, DWT, Embedded Zero tree Wavelet (EZW), Huffman Encoder, Arithmetic Encoder. I. INTRODUCTION A. Introduction Image compression can improve the performance of the digital systems by reducing time and cost in image storage and transmission without significant reduction of the image quality. Image compression is very important in many applications, especially for progressive transmission, image browsing and multimedia applications. The whole aim is to obtain the best image quality and yet occupy less space. Embedded zero tree wavelet compression (EZW) is a kind of image compression that can realize this goal. EZW algorithm is fairly general and performs remarkably well with most types of images. Also, it is applicable to INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) ISSN 0976 – 6367(Print) ISSN 0976 – 6375(Online) Volume 4, Issue 3, May-June (2013), pp. 297-307 © IAEME: www.iaeme.com/ijcet.asp Journal Impact Factor (2013): 6.1302 (Calculated by GISI) www.jifactor.com IJCET © I A E M E
  • 2. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 298 transmission over a noisy channel. Discrete wavelet transform (DWT) become a cutting edge technology in image data compression. Image compression is typically comprised of three basic steps. Firstly, the image is transformed into wavelet coefficients which are then quantized in a quantizer and finally threshold which makes the coefficient smaller than a chosen threshold value (zero) obtained from the quantizer. As a result, some bits are reduced producing an output bit stream [2]. The main contribution of EZW encoding with Huffman and Arithmetic Encoder is that it visually improves the compression of an image by increasing the decomposition level 8 as compared to the paper Shapiro, J. M. R. B., 1993, “Embedded Image Coding Using Zerotrees of Wavelet Coefficients”[1]. decoder “where” the few non-zeros are!!! Significance map (SM): binary array indicating location of Zero/non zero Coefficients. Typically requires a large fraction of bit budget to specify the SM.Wavelets provide a structure (zerotrees) to the SM that yields efficient coding B. WAVELET TRANSFORMATION OF IMAGES Wavelets [7] are mathematical functions that decompose data into different frequency components, and then study each component with a resolution matched to its scale. They have advantages over traditional Fourier methods [4] in analyzing physical situations where the signal contains discontinuities and sharp spikes. Wavelets were developed independently in the fields of mathematics, quantum physics, electrical engineering, and seismic geology. Interchanges between these fields during the last ten years have led to many new wavelet applications such as image compression, turbulence, human vision, radar, and earthquake prediction. The wavelet transformation [7] is a mathematical tool for decomposition. The wavelet transform is identical to a hierarchical sub band filtering system [3], where the sub bands are logarithmically spaced in frequency. The basic idea of the DWT for a two-dimensional image is described as follows. An image is first decomposed into four parts based on frequency sub bands, by critically sub sampling horizontal and vertical channels using sub band filters and named as Low-Low (LL), Low-High (LH), High- Low (HL), and High- High (HH) sub bands as shown in figure 1. Figure 1: Wavelet Transform Each level has various bands information such as low–low, low–high, high–low, and high–high frequency bands. Furthermore, from these DWT coefficients, the original image can be reconstructed. This reconstruction process is called the inverse DWT (IDWT). If C [m, n] represents an image, the DWT and IDWT on each dimension and separately
  • 3. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 299 C. Why Wavelets? Traditional DCT & sub band coding: trends “obscure” anomalies that carry information. E.g., edges get spread, yielding many non-zero coefficients to be coded. Wavelets are better at localizing edges and other anomalies Yields a few non-zero coefficients & many zero coefficients Difficulty: telling the decoder “where” the few non- zeros are!!! Significance map (SM): binary array indicating location of Zero/non zero Coefficients. Typically requires a large fraction of bit budget to specify the SM.Wavelets provide a structure (zero trees) to the SM that yields efficient coding D. EZW ENCODING EZW encoder was originally designed to operate on images (2D-signals) but it can also be used on other dimensional signals. It is based on progressive encoding to compress an image into a bit stream with increasing accuracy. This means that when more bits are added to the stream, the decoded image will contain more detail, a property similar to JPEG encoded images. Using an embedded coding algorithm, an encoder can terminate the encoding at any point thereby allowing a target rate or target accuracy to be met exactly [5, 6]. The EZW algorithm is based on four key concepts: 1) a discrete wavelet transform or hierarchical sub band decomposition, 2) prediction of the absence of significant formation across scales by exploiting the self-similarity inherent in images, 3) entropy-coded successive approximation quantization, and 4) universal lossless data compression which is achieved via adaptive Huffman encoding [8]. The EZW encoder is based on two important observations 1. Natural images in general have a low pass spectrum. When an image is wavelet transformed the energy in the sub bands decreases as the scale decreases (low scale means high resolution), so the wavelet coefficients will, on average, be smaller in the higher sub bands than in the lower sub bands. This shows that progressive encoding is a very natural choice for compressing wavelet transformed images, since the higher sub bands only add detail [8]. 2. Large wavelet coefficients are more important than small wavelet coefficients. These two observations are exploited by encoding the wavelet coefficients in decreasing order, in several passes. For every pass a threshold is chosen against which all the wavelet coefficients are measured. If a wavelet coefficient is larger than the threshold it is encoded and removed from the image, if it is smaller it is left for the next pass. When all the wavelet coefficients have been visited the threshold is lowered and the image is scanned again to add more detail to the already encoded image. This process is repeated until all the wavelet coefficients have been encoded [7]. E. Concept of Zerotree A wavelet transform transforms a signal from the time domain to the joint time-scale domain. i.e. the wavelet coefficients are two-dimensional. To compress the transformed signal not only the coefficient values, but also their position in time has to be coded. When the signal is an image then the position in time is better expressed as the position in space. After wavelet transforming an image it can be represented using trees because of the sub sampling that is performed in the transform. A coefficient in a lower sub band can be thought
  • 4. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 300 of as having four descendants in the next higher sub band as shown in Figure 2 the four descendants each also have four descendants in the next higher sub band, which gives a quad tree, with every root having four leafs [9]. A zero tree is defined as a quad-tree of which all nodes are equal to or smaller than the root and the root is smaller than the threshold against which the wavelet coefficients are currently being measured. The tree is coded with a single symbol and reconstructed by the decoder as a quad-tree filled with zeroes [10]. The EZW encoder codes the zero tree based on the observation that wavelet coefficients decrease with scale. In a zero tree all the coefficients in a quad tree are smaller than the threshold if the root is smaller than this threshold. Under this case the whole tree can be coded with a single zero tree (T) symbol [11]. Figure 2: The relation between wavelet coefficients in sub bands as quad tree Raster Scan Morton Scan Figure 3: Different scanning patterns for scanning wavelet coefficients A scanning of the coefficient is performed in such a way that no child node is scanned before its parent. For an N scale transform, the scan begins at the lowest frequency sub band, denoted as LLN, and scans sub bands HLN, LHN, and HHN, at which point it moves on to scale N-1 etc.[12] The two such scanning patterns for a three-scale pyramid can be seen in Figure 2. Note that each coefficient within a given sub band is scanned before any coefficient in the next sub band Given a threshold level T to determine whether a coefficient is significant, a coefficient x is said to be an element of a zero tree for threshold T if itself and all of its descendents are insignificant with respect to T. An element of a zero tree for threshold T is a zero tree root if it is not the descendents of a previously found zero tree root for threshold T, i.e., it is not predictably insignificant from the discovery of a zero tree root at
  • 5. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 301 a coarser scale at the same threshold[13]. A zero tree root is encoded with a special symbol indicating that the insignificance of the coefficient at finer scales is completely predictable. The significance map can be efficiently represented as a string of symbols from a 3-symbol alphabet which is then entropy encoded [14]. F. HUFFMAN CODING Huffman coding is an entropy encoding algorithm used for lossless data compression. The term refers to the use of a variable-length code table for encoding a source symbol (such as a character in a file) where the variable length code table has been derived in a particular way based on the estimated probability of occurrence for each possible value of the source symbol. It uses a specific method for choosing the representation for each symbol, resulting in a prefix code that expresses the most common source symbols using shorter strings of bits than are used for less common source symbols. The Huffman algorithm is based on statistical coding, which means that the probability of a symbol has a direct bearing on the length of its representation. The more probable the occurrence of a symbol is, the shorter will be its bit-size representation. In any file, certain characters are used more than others. Using binary representation, the number of bits required to represent each character depends upon the number of characters that have to be represented. Using one bit we can represent two characters, i.e., 0 represents the first character and 1 represents the second character. Using two bits we can represent four characters, and so on[10]. Unlike ASCII code, which is a fixed-length code using seven bits per character, Huffman compression is a variable-length coding system that assigns smaller codes for more frequently used characters and larger codes for less frequently used characters in order to reduce the size of files being compressed and transferred[15]. G. ARITHMATIC CODING Arithmetic coding bypasses the idea of replacing an input symbol with a specific code. It replaces a stream of input symbols with a single floating-point output number. More bits are needed in the output number for longer, complex messages. This concept has been known for some time, but only recently were practical methods found to implement arithmetic coding on computers with fixed-sized registers. The output from an arithmetic coding process is a single number less than 1 and greater than or equal to 0. This single number can be uniquely decoded to create the exact stream of symbols that went into its construction [16]. I.IMPLEMENTATION A. wavelet basis choosing Many issues relating to the choice of filter bank for image compression remain unresolved. Constraints on filter bank include perfect reconstruction, finite-length, and the regularity requirement that the iterated low pass filters involved converge to continuous functions. According to [17], it shows that the bi orthogonal wavelet filter banks have a very good performance for wavelet image compression. They have good localization properties as well as their symmetry allows for simple edge treatments. They also produce good results empirically since the original paper on EZW is using this wavelet basis. Moreover, using
  • 6. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 302 properly scaled coefficients, the transformation matrix for a discrete wavelet transforms obtained using these filters is so close to unitary that it can be treated as unitary for the purpose of lossy compression. B. EZW coding algorithm Coding the wavelet coefficients is performed by determining two lists of coefficients: 1. The dominant list D contains information concerning significance of coefficients, which will be coded using Huffman encoding followed by arithmetic coding for further compression 2. The significant list S contains the amplitude values of the significant coefficients, which will undergo uniform scalar quantization followed by Huffman arithmetic coding. Figure 4: Example of decomposition to three resolutions for an 8*8 matrix Significance test The wavelet transform coefficients are scanned for the path as shown in the fig below. In our implemented method, we used Mortan scan as show in Figure 5, which is more accurate and produces standard results Figure 5: Mortan scanning scheme in EZW algorithm Each coefficient is assigned a significance symbols (P, N, Z, T), by comparing with the actual threshold.
  • 7. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 303 1. P (significance and positive): if the absolute value of the coefficient is higher than the threshold T and is positive. 2. N (significance and positive): if the absolute value of the coefficient is higher than the threshold T and is negative. 3. T (zerotree): if the value of the coefficient is lower than the threshold T and has only insignificant descendants4. Z (isolated zero): if the absolute value of the coefficient is lower than the threshold T and has one or more significant descendents. The insignificant coefficients of the last sub bands, which do not accept descendents and are not themselves descendents of a zerotree, are also considered to be zero tree.The significance symbols are then placed in a list D which is subjected to Huffman encoding followed by Arithmetic encoding.The dominant list and the significance list are shown below: The dominant list and the significance list are shown below: D1: P N Z T P T T T T Z T T T T T T T P T T S1: 1 0 1 0 D2: Z T N P T T T T T S2: 1 0 0 1 1 0 C. Huffman coding algorithm The steps involved in encoding dominant list D is as follows: 5. In the dominant list since the probability of occurrence of the symbol T is more when compared to others, this symbol should be coded with the less number of bits. 6. The other symbols probability of occurrence are less when compared to the symbol T, they should be coded with more number of bits. 7. After encoding all the symbols with binary digits, a separator is appended to the end of the encoded bit stream to indicate the end of the stream. For e.g.: In the said algorithm to encode the symbols P, N, Z and T we used the binary bits as follows: P is encoded as 1110 N is encoded as 110 Z is encoded as 10 Since the probability of occurrence is less when compared to T. T is encoded as 0 (since the probability of occurrence is more when compared to other bits) Then we insert a separator bits i.e. a stream of 1 s .Here We used 11111 to indicate the end of the bit stream
  • 8. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 304 8. After getting bit stream, it converts into decimal number and then converts decimal number into character to get resultant byte stream For e.g. 65 coded as A D. Arithmetic coding algorithm 9. The system model, T, keeps record of the symbols that have been encoded. Based on this table the probability of each symbol is estimated. Probability for symbol m is: (T (m+1)-T (m+2))/T 10. Once character probabilities are known, individual symbols need to be assigned a range along a “probability line,” nominally 0 to 1. It doesn’t matter which characters are assigned which segment of the range, as long as it is done in the same manner by both the encoder and the decoder. Each character is assigned the portion of the 0 to 1 range that corresponds to its probability of appearance. For e.g. Character Probability Range A 1/10 0.10 II. EXPERIMENTS AND RESULTS A. performance of EZW algorithm Firstly, original image is applied to the compression program, EZW encoded image is obtain, which is further compressed by combining Huffman and Arithmetic. To reconstruct compressed image, compressed image is applied to decompression program, by which EZW decoded image is obtained. Compression Ratio (CR) and Peak-Signal-to-Noise Ratio (PSNR) are obtained for the original and reconstructed images. In the experiment the original image “Lena.bmp” having size 256 x 256 (65,536) Bytes). The different statistical values of the image Lena.jpg for Various Thresholds are summarized in the table. Image: Lena.bmp Image Size: 256x256 Parameter TH=5 TH=10 TH=20 TH=30 TH=60 Original File Size(byte) 66614 66614 66614 66614 66614 Compressed File Size(byte) 17852 10075 5181 5181 2328 Compression Ratio(CR) 3.4 5.9 11.5 11.5 25.9 Compression Ratio 3.7 6.6 12.9 12.9 28.6 Bits Per Pixel(Bpp) 2.40 1.37 0.71 0.71 0.31 Peak-Signal-to–noise Ratio (PSNR)(db) 27.79 27.85 27.65 26.61 26.21 Encoding Time (sec) 127.8 87.82 60.19 52.91 27.72 Decoding Time (sec) 334.1 293.5 152.15 140.7 90.63 Total Time(sec) 462.3 353.6 212.34 193.6 118.3
  • 9. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 305 Discussion: As mentioned previously, one of the advantages of EZW is that it encodes the image from lossy to lossless in one algorithm. People at the receiver can choose the quality of the image by control the bit budget. As the bit rate increases, you will get more detailed information and of course the image quality becomes better and better. Figure 6 shows this procedure. You can clearly observe some block effect at the lower bit budget; this is due to our implementation in MATLAB which is very slow doing large number of for loop. Figure 7 shows the threshold vs. CR (compression ratio) curve. Figure.6 Decoded image given different bit budget. Left top: highest bit rate (bpp), Right bottom: lowest bit rate (bpp) Figure 7 Thresholds vs. CR 0 5 10 15 20 25 30 35 5 10 20 30 60 C R Threshold Threshold Vs CR Huffman encoder Combine Huffman and Arithmatic encoder
  • 10. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 306 The curves of Threshold Verses CR have been calculated and depicted in the figure.7. In which Image encoded using EZW algorithm for 8 level decomposition and compressed using combining Huffman and Arithmetic gives better BPP and PSNR values than Image Compressed directly using Huffman Encoder. III. CONCLUSION A technique for image compression which uses the Wavelet based Image Coding in combining Huffman and Arithmetic encoding is proposed here. This approach utilizes zero tree structure of wavelet coefficients at decomposition level 8 with combining Huffman and Arithmetic encoder is very effectively, which results in higher compression ratio . The algorithm is tested on different images , and it is seen that the results obtained by Image encoded using EZW algorithm and compressed using combining Huffman and Arithmetic are consistently better than these obtained by Image Compressed directly using Huffman Encoder. It is also observed that the results are better than these reported Earlier. Furthermore, since no training of any kind is required, the algorithm is fairly general and performs remarkably well with most types of images. REFERENCES [1] Still Image Compression by Combining EZW Encoding with Huffman Encoder ,Janaki. R Dr.Tamilarasi Assistant Professor ,N.K.R. Govt. Arts College for Women, Namakkal- 637 001. Dr.Tamilarasi.A, Professor & Head Department of MCA, Kongu Engineering College, Perundurai - 638 052. [2] K.P.Soman,K.I.Ramachandran “Insight into Wavelets from theory to practice”. Prentice- Hall of India Private Limited. [3] K.Sayood, “Introduction to Data Compression”, 2nd edition, Academic Press, Morgan Kaufman Publishers, 2000. [4] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Pearson Education, Englewood Cliffs,2002 . [5] Creusere, C.D., A New Method of Robust Image Compression Based on the Embedded Zerotree Wavelet Algorithm, IEEE Transactions on Image Processing, 6, No. 10 (1997), p. 1436-1442. [6] Shapiro, J. M., Embedded Image Coding Using Zerotrees of Wavelet Cefficients, IEEE Transactions on Signal Processing, 41, No. 12 (1993), p. 3445-3462. [7] David Salomon, Data Compression- The Complete Reference, Springer,2004, 3rd edition. [8] S. D. Servetto, K. Ramchandran, and M. T. Orchard, “Image coding based on a morphological representation of wavelet data”, IEEE Trans.Image Processing, vol. 8, pp. 1161-1174, Sept. 1999. [9] Vinay U. Kale & Nikkoo N. Khalsa,International Journal of Computer Science & Communication “Performance Evaluation of Various Wavelets for Image Compression of Natural and Artificia Images”,Vol. 1, No. 1, January-June 2010, pp. 179-184, [10] Tripatjot Singh, Sanjeev Chopra, Harmanpreet Kaur, Amandeep Kaur,Image Compression Using Wavelet and Wavelet Packet Transformation, IJCST Vol.1, Issue 1, September 2010. [11] Kharate G.K., Ghatol A. A. and Rege P. P., “ Image Compression Using Wavelet Packet Tree,” ICGSTGVIP
  • 11. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976- 6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME 307 [12] Uytterhoeven G., “Wavelets: Software and Applications”, U. Leuven Celestijnenlaan, Department of Computer Science, Belgium, 1999. [13] Jerome M. Shapiro,” Embedded Image Coding Using Zerotrees of Wavelet Coefficients,” IEE Transactions on Signal Processing, December 1993. [14] Lotfi A. A., Hazrati M. M., Sharei M., Saeb Azhang, “ Wavelet Lossy Image Compression on Primitive FPGA”, IEEE, pp. 445-448, 2005. [15] Kharate G. K., Patil V. H., “Color Image Compression Based On Wavelet Packet Best Tree,” IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010. [16] chapter 5 of "The Data Compression Book" by Mark Nelson. [17] John D. Villasenor, Benjamin Belzer, and Judy Liao, Wavelet filter Evaluation for Image Compression, IEEE Transaction on Image Processing, Vol 4, NO 8, August 1995. pp1053-1060. [18] B.K.N.Srinivasa Rao and P.Sowmya, “Architectural Implementation of Video Compression Through Wavelet Transform Coding and EZW Coding”, International Journal of Electronics and Communication Engineering & Technology (IJECET), Volume 3, Issue 3, 2012, pp. 202 - 210, ISSN Print: 0976- 6464, ISSN Online: 0976 –6472. [19] Pardeep Singh, Nivedita and Sugandha Sharma, “A Comparative Study: Block Truncation Coding, Wavelet, Embedded Zerotree and Fractal Image Compression on Color Image”, International Journal of Electronics and Communication Engineering & Technology (IJECET), Volume 3, Issue 2, 2012, pp. 10 - 21, ISSN Print: 0976- 6464, ISSN Online: 0976 –6472. [20] S.Anandanarayanan and Dr.S.K.Srivatsa, “A High Performance Novel Image Compression Technique using Huffman Coding with Edge Dection”, International Journal of Computer Engineering & Technology (IJCET), Volume 4, Issue 2, 2013, pp. 17 - 22, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375.