SlideShare a Scribd company logo
1 of 11
Download to read offline
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME
57
USING OF WASTED FILINGS OF IRON TO ADSORB METHYLENE BLUE
DYE FROM AQUEOUS SOLUTION
Prof. Dr. Mohammad Abid Moslim Al-Tufaily, Zahraa Ali Hmoud
Department of Environmental Engineering, College of Engineering,
Babylon university, Hilla, Iraq
ABSTRACT
Twenty five experiments for both untreated and treated iron filings were carried out at
various initial concentrations of MB, flow rate, bed depth, and different ratios of iron filings .Two
types of experiments were carried out, batch experiments and continuous flow (column system)
experiments. Batch study showed that equilibrium isotherms for all the adsorbents used in the study
are of favorable type. The equilibrium data for methylene blue adsorption on both adsorbent well
fitted to the Langmuir equation, with maximum monolayer adsorption capacities of (24.47 mg/g) and
(25.03 mg/g) exhibited by untreated iron filings and treated iron filings respectively.
Key Words: (MB) Dye, Adsorption, Iron Filings, Batch Experiment, Continuous Experiment.
1. INTRODUCTION
Dyestuff in wastewater from various industries, such as textiles, printing, pulp mills, leather,
dyestuffs, and plastics, are stable and resistant to biodegradation because of its complex aromatic
molecular structure. (El Qada et al., 2008; Han et al., 2008) Undoubtedly, the removal of dyestuff
from waste effluents is of environmental importance. So far, various technologies including
biological treatment, coagulation/flocculation, ozone treatment, chemical oxidation, membrane
filtration, ion exchange, photocatalysis, and adsorption have been developed for the treatment of dye-
containing effluents. Among them, adsorption is a reliable alternative due to its simplicity and high
efficiency as well as the availability of a wide range of adsorbents (e.g., activated carbon, clay,
biomass, polymer, zeolite, nanomaterials, etc.). In particular, activated carbon offers an attractive
option for the efficient removal of various pollutants from waters because of its high surface area and
porous structure. (Pelekani and Snoeyink, 2001) Unfortunately, the utilization of activated carbon
on a large scale is limited by process engineering difficulties, such as its dispersion problem and
INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING
AND TECHNOLOGY (IJARET)
ISSN 0976 - 6480 (Print)
ISSN 0976 - 6499 (Online)
Volume 5, Issue 4, April (2014), pp. 57-67
© IAEME: www.iaeme.com/ijaret.asp
Journal Impact Factor (2014): 7.8273 (Calculated by GISI)
www.jifactor.com
IJARET
© I A E M E
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME
58
regeneration cost ; therefore, many efforts have been made to investigate the use of various low cost
organic adsorbents, which are cheap, easily available and disposable without regeneration. These
materials are derived from natural resources, agricultural wastes or industrial by-products as peat,
wood, barley rice husk, sawdust, biomass. Most of them are cellulose based and can be used without
any previous thermal or chemical treatment (Subramani, 2002).
A use of zero-valent iron (Fe
0
) as reactive medium for wastewater treatment is one of the
most promising techniques because the iron metal is of low-cost, is easy-to-obtain, and has good
effectiveness and ability of minimizing contaminants. In addition, iron waste particles from industrial
filings can be used as a zero-valent iron (Palaharn and Junyapoon 2004; Lee et al., 2003).
Reactive barriers containing iron metals are currently being developed for in situ treatment
technology (Puls et al., 1999). As zero-valent iron is a strong reducer, it has been used to remove
several contaminants from wastewater such as halogenated hydrocarbon compounds, heavy metals,
dyes, pesticides, and herbicides, which represent the main pollutants in wastewater (Sivavec and
Horney, 1995).
(Yang, 2005) conducted a study to investigate the key operational parameters of batch and
continuous-flow. Zero–Valent Iron (ZVI) decolorization of a reactive anthraquinone dye and
Reactive Blue 4 (RB4), batch decolorization kinetics indicates that ZVI decolorization of RB4 is a
surface catalyzed, mass transfer-limited process. The results of a long-term continuous-flow ZVI
decolorization column demonstrated that continuous-flow ZVI decolorization is feasible. However,
column porosity losses and a shift of reaction kinetics occur in long-term column operation, leading
to a decrease in column decolorization efficiency. ZVI decolorization of RB4 was successfully
described with a pseudo first-order or a site saturation model.
(Omar et al., 2011) the inhibition effect of methylene blue dye (MBD) on the corrosion of
mild steel in 0.5 M sulphuric acid solution at 30°C was studied by weight loss, potentiodynamic
polarization and electrochemical impedance spectroscopy (EIS) methods. The results show that
MBD is an excellent inhibitor even with very low concentration, and the adsorption of methylene
blue dye (MBD) on the mild steel surface obeys Langmuir adsorption isotherm. Potentiodynamic
polarization curves reveal that MBD behaves as a mixed-type inhibitor. EIS spectra exhibit one
capacitive loop and confirm the inhibitive ability. Some thermodynamic functions of dissolution and
adsorption processes were also determined. The obtained results indicated that MBD is chemically
adsorbed on the steel surface.
2. MATERIALS AND METHODS
2.1 Adsorbate Material
Methylene blue (MB) dye was chosen in this study because of its known strong adsorption
onto solids (Chongrak et al., 1998), and is often serves as a model compound for removing organic
contaminants and colored bodies from aqueous solutions. Methylene blue which is the most
commonly used material for dying cotton, wood, and silk, is a basic cationic dye heterocyclic
aromatic chemical compound with (C16H18N3ClS) as molecular formula and a molecular weight of
373.91 g/mol (Rastogi et al., 2008).
2.2 Adsorbent Material
Iron filings used for this study was composed of commercial iron particles obtained from a
peerless metal powder and abrasive workshop, where cutlasses and knifes are sharpened, and iron
materials are made smooth. The mesh size of iron filings used in the study was of (0.5-1.4 mm).
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME
59
2.3 Preparation of the Stock Solution
Stock solution of methylene blue (1000 mg/l) and diluted to the required concentration of
(100 mg/l) for calibration purposes according to the following equation:
(m * v)1 = (m * v)2 (1)
The pH of the prepared solutions for both batch and column experiments was equal to 5
based on the recommendation of (Noubactep, 2009). Adsorption experiments were carried out at
temperature of 25±5 o
C.
2.4 Calibration Curve
Table1: Standard samples and absorbency for MB Dye
Concentration (mg/l) Absorbency
5 0.4905
10 1.1366
15 1.6536
20 2.4948
25 3.1549
30 3.5228
con. = 8.3117*abs.
R
2
= 0.9924
0
5
10
15
20
25
30
35
0 0.5 1 1.5 2 2.5 3 3.5 4
absorbency
MBConcentration(mg/l)
Figure 1: The calibration curve of UV spectrophotometer at (λmax=664nm)
2.5 Experimental procedure for Batch Experiments
For isotherm studies, accurately different masses (0.3, 0.6, 0.9, 1.2, 1.5, 1.8 and 2.1) gm of
adsorbent (treated and untreated iron filings) with the particle size of (0.5-1.4 mm) mixed with 100
ml of MB solution with initial concentration of 100 mg/l. The whole set was then placed on a Wrist
shaker at 25ºC for 150 min. which is more than sufficient time to reach equilibrium. The pH of the
solutions was equal to 5. At the end of the equilibrium period, samples were filtered using
Whatmann No.1 filter paper in order to minimize the interference of the iron filings fines with the
analysis. Percent removal (R%) was evaluated from the following equation:
R%=((Ci-Ce)/Ci)*100 (2)
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME
60
The concentrations of MB in the solutions before and after adsorption were determined using
a double beam UV-visible spectrophotometer (UV 1600 PC Shimadzu) at 664 nm wavelength. The
amount of adsorption at equilibrium, qe (mg/g), was calculated by the following equation (Mahir et
al., 2004):
qe=(Co-Ce)V/W (3)
Where Co and Ce (mg/l) are the liquid phase concentrations of dye at the initial and
equilibrium conditions, respectively. V is the volume of the solution (L) and W is the mass of dry
adsorbent used (gm).
Equilibrium isotherm treated and untreated iron filings
Table (2): Equilibrium isotherm for untreated iron filings at (Co = 100 mg/l, PH=5, Temp.=25±5°C,
Shaking time=150 min., V=0.1L)
W (gm) Ce (mg/l) qe (mg/g) Removal%
0.3 26.6 24.47 73.4
0.6 7.8 15.37 92.2
0.9 2.5 10.83 97.5
1.2 2 8.17 98.00
1.5 1.6 6.56 98.4
1.8 1.19 5.49 98.81
2.1 0.99 4.71 99.01
Table (3): Equilibrium isotherm for treated iron filings at (Co = 100 mg/l , PH=5, Temp.=25±5°C,
Shaking time=150 min., V=0.1L)
W (gm) Ce (mg/l) qe (mg/g) Removal%
0.3 24.9 25.03 75.1
0.6 5.5 15.75 94.5
0.9 1.8 10.91 98.2
1.2 1.3 8.23 98.7
1.5 1.01 6.59 98.99
1.8 0.76 5.51 99.24
2.1 0.45 4.74 99.55
3. RESULTS AND DISCUSSION
3.1 Estimation of the Adsorption Isotherm Constants for Untreated and Treated Iron Filings
System
The Langmuir, Freundlich, and the equilibrium adsorption isotherms of methylene blue
adsorption onto iron fillings of size (0.5-1.4 mm) at 25°C and pH=5 are shown in Figs.(2), (3)
respectively for untreated iron filings and (4), (5) respectively for treated iron filings. The
parameters for each model were obtained and presented in Table (2).
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME
61
3.1.1 Untreated iron filings
y = 0.0346x + 0.1807
R
2
= 0.9923
0
0.2
0.4
0.6
0.8
1
1.2
0 5 10 15 20 25 30
Ce (mg/l)
Ce/qe(g/l)
Figure 2: Langmuir adsorption Isotherm of MB onto untreated iron filing at 25o
C and pH=5
y = 0.4885x + 0.7349
R
2
= 0.9518
0
0.5
1
1.5
2
-0.5 0 0.5 1 1.5
Log Ce
Logqe
Figure 3: Freundlich adsorption Isotherm of MB onto untreated iron filings at 25o
C and pH=5
3.1.2 Treated iron filings
Ce/qe = 0.0358*Ce + 0.1104
R
2
= 0.9952
0
0.2
0.4
0.6
0.8
1
1.2
0 5 10 15 20 25 30
Ce (mg/l)
Ce/qe(g/l)
Figure 4: Langmuir adsorption Isotherm of MB onto treated iron filings at 25o
C and pH=5
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME
62
Log qe = 0.4293*log Ce + 0.8438
R2
= 0.9636
0
0.5
1
1.5
2
-0.5 0 0.5 1 1.5
Log Ce
Logqe
Figure 5: Freundlich adsorption Isotherm of MB onto treated iron filings at 25o
C and pH=5
3.2 Adsorption isotherm
Adsorption equilibrium data of MB dye was fitted to the Langmiur and Freundlich isotherm
models .These isotherms are expressed by the following equations
qe=(q0 KL Ce)/(1+KL Ce ) (4)
qe=Kf Ce
1/n
(5)
where; qe : Amount adsorbed per unit weight of adsorbent at equilibrium (mg/g), (mol/g)
Ce : Equilibrium concentration of adsorbate in solution after adsorption (mg/g), (mol/L)
Kf : Empirical Freundlich constant or capacity factor (mg/g), (mol/g)
1/n : Freundlich exponent
q0 : Empirical Langmuir constant which represents maximum adsorption capacity (mg/g), (mol/g)
KL : Empirical Langmuir constant (L/mg), (L/mol)
Eq. (4) and (5) are frequently used in the linear form after rearrangement. The experimental
data was also correlated by both linearised Langmuir and Freundlich equations (Eq.4 and Eq.5). For
MB dye the Langmuir and Freundlich isotherm constant are summarized in table 1 for both treated
and untreated iron filings.
Table 4: Isotherm constants for MB dye Adsorption on treated and untreated iron filings
Model
Adsorbent
Untreated iron filings Treated Iron filings
Parameter Value Parameter Value
Langmuir
(eq. (3-3))
qo (mg/g) 28.90 qo (mg/g) 27.933
KL (l/mg) 0.1915 KL (l/mg) 0.324
RL 0.049 RL 0.029
R2
0.9923 R2
0.9952
Freundlich
(eq. (3-1))
KF (mg/g(l/mg)1/n
) 5.431 KF (mg/g(l/mg)1/n
) 6.979
1/n 0.489 1/n 0.429
R2
0.9518 R2
0.9636
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME
63
• In order to assess the different isotherms and their ability to correlate with experimental
results, the coefficient of determination (R2
) was employed to ascertain the fit of each
isotherm with experimental data. From Table (4), the coefficient of determination values
were higher for Langmuir than for Freundlich. This indicates that the Langmuir isotherm is
clearly the better fitting isotherm for the experimental data. Conformation of the
experimental data with Langmuir isotherm model indicates the homogeneous nature of the
surfaces of the adsorbents used.
• The value for the maximum adsorption capacities of (24.47 mg/g) and (25.03 mg/g) and the
value of (removal %) of (73.4 %) and (75.1 %) exhibited by untreated iron filings and
treated iron filings respectively. It is clear that iron filings is a very comparable material for
the commercial activated carbon.
• The values of (RL) were found to be (0.049) and (0.029) for untreated iron filings and treated
iron filings respectively. This gain confirmed that the Langmuir isotherm was favorable for
adsorption of MB onto the adsorbents used in this study.
0
5
10
15
20
25
30
0 10 20 30
Ce (mg/l)
qe(mg/gironfillings)
Experimental
Langmuir
Fruendlich
Figure (6): Equilibrium adsorption Isotherm of MB onto untreated iron filings at 25o
C and pH=5
0
5
10
15
20
25
30
0 10 20 30
Ce (mg/l)
qe(mg/gironfillings)
Experimental
Langmuir
Fruendlich
Figure (7): Equilibrium adsorption Isotherm of MB onto treated iron filings at 25o
C and pH=5
3.3 Column Experiments and Breakthrough Curves
The performance of a fixed-bed column was described through the concept of the
breakthrough curve. The time for breakthrough appearance and the shape of the breakthrough curve
are very important characteristics for determining the operation and the dynamic response of an
adsorption column. The loading behavior of MB to be adsorbed from solution in a fixed-bed is
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME
64
usually expressed in term of C/Co as a function of time or volume of the effluent for a given bed
height, giving a breakthrough curve.
3.3.1 Effect of Initial Dye Concentration
The effect of influent MB concentration on the shape of the breakthrough curves was
investigated by varying the initial MB concentration between (15, 30, 40, and 50) mg/l with constant
iron filings bed height of 0.1m, solution pH of 5 and flow rate of 3.33 *10-6
m3
/s.
The breakthrough curves of the above experiments were plotted in Fig.(8) for untreated iron
filings and (9) for treated iron filings . It is clear that the breakthrough time decreased with increasing
influent MB concentration. At lower influent MB concentrations, breakthrough curves were
dispersed and breakthrough occurred slowly. As influent concentration increased, sharper
breakthrough curves were obtained. These results demonstrate that the change of concentration
gradient affects the saturation rate and breakthrough time. This can be explained by the fact that
more adsorption sites were being covered as the MB concentration increases.
0
0.2
0.4
0.6
0.8
1
1.2
0 500 1000 1500
Time (min)
C/C0
C0=50 mg/l
C0=40 mg/l
C0=30 mg/l
C0=15 mg/l
Figure (8): The experimental breakthrough data for adsorption of MB onto untreated iron filings at
different initial concentrations, Q=3.33*10-6
m3/s, L=0.1 m, pH=5
0
0.2
0.4
0.6
0.8
1
1.2
0 500 1000 1500
Time (min)
C/C0
C0=50 mg/l
C0=40 mg/l
C0=30 mg/l
C0=15 mg/l
Figure (9): The experimental breakthrough data for adsorption of MB onto treated iron filings at
different initial concentrations, Q=3.33 *10-6
m3
/s, L=0.1 m, pH=5
3.3.2 Effects of Adsorbent Bed Depth
Figure (10) for untreated iron filings and (11) for treated iron filings shows the breakthrough
curves obtained for MB adsorption on the iron filings for four different iron filings bed depths of
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME
65
0.05, 0.1, 0.15, and 0.2 m, at a constant flow rate of 3.33*10-6
m3
/sec, pH of 5 and MB initial
concentration of 50 mg/l.
Both the breakthrough and exhaustion time increased with increasing the bed depth. A higher
MB uptake was also expected at a higher bed depth due to the increase in the specific surface area of
the iron filings, which provided more binding sites for the dye to adsorb. Since the rate of adsorption
is proportional to adsorbent surface area, then total quantity of solute removed from solution at any
period of time will increase with increasing bed depth.
0
0.2
0.4
0.6
0.8
1
1.2
0 500 1000 1500 2000
Time (min)
C/C0
L=0.05 m
L=0.1 m
L=0.15 m
L=0.2 m
Figure (10): The experimental breakthrough data for adsorption of MB onto untreated iron filings at
different bed depths, Q=3.33 *10-6
m3/s, Co=50 mg/l, pH=5
0
0.2
0.4
0.6
0.8
1
1.2
0 500 1000 1500 2000
Time (min)
C/C0
L=0.05 m
L=0.1 m
L=0.15 m
L=0.2 m
Figure (11): The experimental breakthrough data for adsorption of MB onto treated iron filings at
different bed depths, Q=3.33 *10-6
m3
/s, Co=50 mg/l, pH=5
3.3.3 Effect of Solution Flow Rate
To investigate the effect of flow rate on the adsorption of MB using iron fillings bed, the flow
rate of the influent MB solution varied (2.2*10-6
, 3.33*10-6
, 4.17*10-6
, and 5.83*10-6
) m3
/sec with
constant bed depth of 0.1m, initial methylene blue (MB) concentration of 50 mg/l, and pH solution
of 5 as shown by the breakthrough curves in Fig. (12) for untreated iron filings and Fig. (13) for
treated iron filings .
It can be seen that the breakthrough generally occurred faster with a higher flow rate. This is
due to decreased contact time between the dye and the sorbent at higher flow rate, which results in
lower bed utilization. Breakthrough time reaching saturation was increased significantly with a
decrease in the flow rate. At a low rate of influent, MB had more time to be in contact with
adsorbent, which resulted in a greater removal of MB molecules in column.
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME
66
0
0.2
0.4
0.6
0.8
1
1.2
0 200 400 600 800 1000
Time (min)
C/C0
Q=2.2*10^-6 m3/sec
Q=3.33*10^-6 m3/sec
Q=4.17*10^-6 m3/sec
Q=5.83*10^-6 m3/sec
Figure (12): The experimental breakthrough data for adsorption of MB onto untreated iron filings at
different flow rates, L=0.1 m, Co=50 mg/l, pH=5
0
0.2
0.4
0.6
0.8
1
1.2
0 500 1000 1500
Time (min)
C/C0
Q=2.2*10^-6 m3/sec
Q=3.33*10^-6 m3/sec
Q=4.17*10^-6 m3/sec
Q=5.83*10^-6 m3/sec
Figure (13): The experimental breakthrough data for adsorption of MB onto treated iron filings at
different flow rates, L=0.1 m, Co=50 mg/l, pH=5
CONCLUSIONS
Industrial waste materials (iron filings) appear as effective and cheap adsorbents for removal
of MB dye from aqueous solution. Moreover, the materials could also be used for purification of
water. The removal of MB dye from effluent is important to many countries of the world both
environmentally and for water re-use. Treated and untreated iron filings have a very low economical
value, can be an effective adsorbents for MB dye removal from aqueous system for environmental
cleaning purposes.
REFERENCES
[1] Chongrak, K., Eric, H., Noureddine, A., and Jean, P. G., (1998), “Application of Methylene
Blue Adsorption to Cotton Fiber Specific Surface Area Measurement, Part I:
Methodology”, Journal of Cotton Science, Vol. 2, Pp. 164-173.
[2] El Qada, E. N., Allen, S. J., Walker, G. M., (2008) “Adsorption of Basic Dyes from Aqueous
Solution onto Activated Carbons”, Journal of Chemical Engineering, Vol.135, Pp.174–184.
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME
67
[3] Han, R., Ding, D., Xu, Y., Zou, W., Wang, Y., Li, Y., Zou, L., (2008), “Use of Rice Husk for
Adsorption of Congo Red from Aqueous Solution in Column Made”, Bioresour.
Technology, Vol.99, Pp.2938–2946.
[4] Lee T., Lim H., Lee Y. And Park J-W., (2003), “Use of Waste Iron Metal for Removal of
Cr(VI) from Water”, Chemosphere, Vol.53,Pp.479-485.
[5] Mahir A., Ozkan D. and Mehmet D., (2004), “Removal of Acid Yellow 49 from Aqueous
Solution by Adsorption”, Fresenius Environmental Bulletin, Vol. 13, No.11a, Pp.1112-1121.
[6] Noubactep, C., (2009), “Characterizing the Discoloration of Methylene Blue in Fe0/H2O
Systems”, Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, D - 37077
Göttingen, Germany.
[7] Omar Benali, Lahcene Larabi, Salah Merah, Yahia Harek, (2011), "Influence of the
Methylene Blue Dye (MBD) on the corrosion inhibition of mild steel in 0.5 M sulphuric
acid, Part I: weight loss and electrochemical studies", Journal of Hazardous Material,
Vol. 2,No.1,Pp. 39-48.
[8] Palaharn, W. And Junyapoon, S., (2004), “Discoloration of Reactive Blue 5 in Aqueous
Solutions by Waste Iron Particles”, International Conference on Integration of Science and
Technology for Sustainable Development, Bangkok, Thailand, Vol. 1, Pp. 217-220.
[9] Pelekani, C., Snoeyink, V. L. A., (2001), “Kinetic and Equilibrium Study of Competitive
Adsorption Between Atrazine and Congo Red Dye on Activated Carbon: The Importance
of Pore Size Distribution”, Carbon, Vol.39, Pp. 25–37.
[10] Puls, R.W., Paul, C.J. and Powell, R.M., (1999), “The Application of in Situ Permeable
Reactive (Zero-Valent Iron) Barrier Technology for the Remediation of Chromate
Contaminated Groundwater: A Field Test”, Applied Geochemistry, Vol.14, Pp.989-1000.
[11] Rastogi K., Sahu J. N., Meikap B. C., and Biswas M. N.,(2008),“ Removal of Methylene
Blue from Wastewater using Fly Ash as an Adsorbent by Hydrocyclone”, Journal of
Hazardous Materials, Vol.158, Pp.531-540.
[12] Sivavec, T.J. And Horney, D.P., (1995), “Reductive Dechlorination of Chlorinated Ethenes
by Iron Metal”, Proceedings of the 209th ACS National Meeting, Anaheim, California.
[13] Subramani A., (2002), “Adsorption of Organic Pollutants onto Natural Adsorbents”, M.Sc.
Thesis, Faculty of Mississippi State University, Department of Chemical Engineering.
[14] Yang Hanbae, (2005), “Zero-Valent Iron Decolorization of the Anthraquinone Dye
Reactive Blue 4 and Biodegradation Assessment of its Decolorization Products”, M.Sc.
Thesis, Environmental Engineering, Department of Civil and Environmental Engineering.
[15] P.Muthamilselvi, E.Poonguzhali and Dr. R.Karthikeyan, “Removal of Phenol from Aqueous
Solutions by Adsorption”, International Journal of Advanced Research in Engineering &
Technology (IJARET), Volume 3, Issue 2, 2012, pp. 280 - 288, ISSN Print: 0976-6480,
ISSN Online: 0976-6499.
[16] Rasha Salah Mahdiz, “Removal of the Blue Methylene Dye from an Aqueous Solution by
using Powdered Corn Cob”, International Journal of Civil Engineering & Technology
(IJCIET), Volume 5, Issue 1, 2014, pp. 21 - 34, ISSN Print: 0976 – 6308, ISSN Online:
0976 – 6316.
[17] Prof.Dr.Mohammad Abid Moslim Al-Tufaily and Wisam Sh. Jabir Al- Salami, “Computerize
RCRA, EWC and BC Hazardous Wastes Classification System using Visual Basic- 6
Language”, International Journal of Civil Engineering & Technology (IJCIET), Volume 5,
Issue 1, 2014, pp. 111 - 124, ISSN Print: 0976 – 6308, ISSN Online: 0976 – 6316.
[18] V.C.Padmanaban, Soumya.S.Prakash, Sherildas P, John Paul Jacob and Kishore
Nelliparambil, “Biodegradation of Anthraquinone Based Compounds: Review”,
International Journal of Advanced Research in Engineering & Technology (IJARET),
Volume 4, Issue 4, 2013, pp. 74 - 83, ISSN Print: 0976-6480, ISSN Online: 0976-6499.

More Related Content

What's hot

Influence of Ion Beam and Carbon Black Filler Type on the Mechanical and Phys...
Influence of Ion Beam and Carbon Black Filler Type on the Mechanical and Phys...Influence of Ion Beam and Carbon Black Filler Type on the Mechanical and Phys...
Influence of Ion Beam and Carbon Black Filler Type on the Mechanical and Phys...Editor IJCATR
 
ArthurRempelPresentation150808
ArthurRempelPresentation150808ArthurRempelPresentation150808
ArthurRempelPresentation150808Arthur Rempel
 
Electrochemically reduced graphene oxide (ergo) as humidity sensor effect o...
Electrochemically reduced graphene oxide (ergo) as humidity sensor   effect o...Electrochemically reduced graphene oxide (ergo) as humidity sensor   effect o...
Electrochemically reduced graphene oxide (ergo) as humidity sensor effect o...Journal Papers
 
Preparation and Structural Properties of Aluminium Substituted Lithium Nano F...
Preparation and Structural Properties of Aluminium Substituted Lithium Nano F...Preparation and Structural Properties of Aluminium Substituted Lithium Nano F...
Preparation and Structural Properties of Aluminium Substituted Lithium Nano F...IOSR Journals
 
Study the corrosion inhibition of urea fertilizer
Study the  corrosion inhibition of urea fertilizerStudy the  corrosion inhibition of urea fertilizer
Study the corrosion inhibition of urea fertilizerIAEME Publication
 
Graphene Based Material for Biomedical Applications
Graphene Based Material for Biomedical ApplicationsGraphene Based Material for Biomedical Applications
Graphene Based Material for Biomedical ApplicationsDr. Sitansu Sekhar Nanda
 
Coordination modes of a new ligand derived from pyrazoline with cr(iii), mn(i...
Coordination modes of a new ligand derived from pyrazoline with cr(iii), mn(i...Coordination modes of a new ligand derived from pyrazoline with cr(iii), mn(i...
Coordination modes of a new ligand derived from pyrazoline with cr(iii), mn(i...Alexander Decker
 
Experimental and Quantum Chemical Studies on the Corrosion Inhibition Perform...
Experimental and Quantum Chemical Studies on the Corrosion Inhibition Perform...Experimental and Quantum Chemical Studies on the Corrosion Inhibition Perform...
Experimental and Quantum Chemical Studies on the Corrosion Inhibition Perform...inventionjournals
 
Surfactant-assisted Hydrothermal Synthesis of Ceria-Zirconia Nanostructured M...
Surfactant-assisted Hydrothermal Synthesis of Ceria-Zirconia Nanostructured M...Surfactant-assisted Hydrothermal Synthesis of Ceria-Zirconia Nanostructured M...
Surfactant-assisted Hydrothermal Synthesis of Ceria-Zirconia Nanostructured M...IOSR Journals
 
Properties of Zinc Phosphate Coatings on Carbon Steel Using a Thermostatic Ce...
Properties of Zinc Phosphate Coatings on Carbon Steel Using a Thermostatic Ce...Properties of Zinc Phosphate Coatings on Carbon Steel Using a Thermostatic Ce...
Properties of Zinc Phosphate Coatings on Carbon Steel Using a Thermostatic Ce...CrimsonPublishersACSR
 
Surface modification and properties modulation of r go film by short duration...
Surface modification and properties modulation of r go film by short duration...Surface modification and properties modulation of r go film by short duration...
Surface modification and properties modulation of r go film by short duration...Journal Papers
 
Thermodynamic characterization of metal dissolution and inhibitor adsorption ...
Thermodynamic characterization of metal dissolution and inhibitor adsorption ...Thermodynamic characterization of metal dissolution and inhibitor adsorption ...
Thermodynamic characterization of metal dissolution and inhibitor adsorption ...IJRES Journal
 
Synthesis and Characterisation of Iron Oxide dispersed Graphene Nanocomposite.
Synthesis and Characterisation of Iron Oxide dispersed Graphene  Nanocomposite.Synthesis and Characterisation of Iron Oxide dispersed Graphene  Nanocomposite.
Synthesis and Characterisation of Iron Oxide dispersed Graphene Nanocomposite.Mitul Rawat
 

What's hot (17)

2001 complete
2001 complete2001 complete
2001 complete
 
Influence of Ion Beam and Carbon Black Filler Type on the Mechanical and Phys...
Influence of Ion Beam and Carbon Black Filler Type on the Mechanical and Phys...Influence of Ion Beam and Carbon Black Filler Type on the Mechanical and Phys...
Influence of Ion Beam and Carbon Black Filler Type on the Mechanical and Phys...
 
ArthurRempelPresentation150808
ArthurRempelPresentation150808ArthurRempelPresentation150808
ArthurRempelPresentation150808
 
Electrochemically reduced graphene oxide (ergo) as humidity sensor effect o...
Electrochemically reduced graphene oxide (ergo) as humidity sensor   effect o...Electrochemically reduced graphene oxide (ergo) as humidity sensor   effect o...
Electrochemically reduced graphene oxide (ergo) as humidity sensor effect o...
 
Preparation and Structural Properties of Aluminium Substituted Lithium Nano F...
Preparation and Structural Properties of Aluminium Substituted Lithium Nano F...Preparation and Structural Properties of Aluminium Substituted Lithium Nano F...
Preparation and Structural Properties of Aluminium Substituted Lithium Nano F...
 
JMCC
JMCCJMCC
JMCC
 
D045042227
D045042227D045042227
D045042227
 
Study the corrosion inhibition of urea fertilizer
Study the  corrosion inhibition of urea fertilizerStudy the  corrosion inhibition of urea fertilizer
Study the corrosion inhibition of urea fertilizer
 
Bo4201439445
Bo4201439445Bo4201439445
Bo4201439445
 
Graphene Based Material for Biomedical Applications
Graphene Based Material for Biomedical ApplicationsGraphene Based Material for Biomedical Applications
Graphene Based Material for Biomedical Applications
 
Coordination modes of a new ligand derived from pyrazoline with cr(iii), mn(i...
Coordination modes of a new ligand derived from pyrazoline with cr(iii), mn(i...Coordination modes of a new ligand derived from pyrazoline with cr(iii), mn(i...
Coordination modes of a new ligand derived from pyrazoline with cr(iii), mn(i...
 
Experimental and Quantum Chemical Studies on the Corrosion Inhibition Perform...
Experimental and Quantum Chemical Studies on the Corrosion Inhibition Perform...Experimental and Quantum Chemical Studies on the Corrosion Inhibition Perform...
Experimental and Quantum Chemical Studies on the Corrosion Inhibition Perform...
 
Surfactant-assisted Hydrothermal Synthesis of Ceria-Zirconia Nanostructured M...
Surfactant-assisted Hydrothermal Synthesis of Ceria-Zirconia Nanostructured M...Surfactant-assisted Hydrothermal Synthesis of Ceria-Zirconia Nanostructured M...
Surfactant-assisted Hydrothermal Synthesis of Ceria-Zirconia Nanostructured M...
 
Properties of Zinc Phosphate Coatings on Carbon Steel Using a Thermostatic Ce...
Properties of Zinc Phosphate Coatings on Carbon Steel Using a Thermostatic Ce...Properties of Zinc Phosphate Coatings on Carbon Steel Using a Thermostatic Ce...
Properties of Zinc Phosphate Coatings on Carbon Steel Using a Thermostatic Ce...
 
Surface modification and properties modulation of r go film by short duration...
Surface modification and properties modulation of r go film by short duration...Surface modification and properties modulation of r go film by short duration...
Surface modification and properties modulation of r go film by short duration...
 
Thermodynamic characterization of metal dissolution and inhibitor adsorption ...
Thermodynamic characterization of metal dissolution and inhibitor adsorption ...Thermodynamic characterization of metal dissolution and inhibitor adsorption ...
Thermodynamic characterization of metal dissolution and inhibitor adsorption ...
 
Synthesis and Characterisation of Iron Oxide dispersed Graphene Nanocomposite.
Synthesis and Characterisation of Iron Oxide dispersed Graphene  Nanocomposite.Synthesis and Characterisation of Iron Oxide dispersed Graphene  Nanocomposite.
Synthesis and Characterisation of Iron Oxide dispersed Graphene Nanocomposite.
 

Viewers also liked (20)

50120140503017 2
50120140503017 250120140503017 2
50120140503017 2
 
40220140503007
4022014050300740220140503007
40220140503007
 
30120140504002
3012014050400230120140504002
30120140504002
 
50120140504002
5012014050400250120140504002
50120140504002
 
30120140503011
3012014050301130120140503011
30120140503011
 
20320140502005
2032014050200520320140502005
20320140502005
 
50120130405032
5012013040503250120130405032
50120130405032
 
50120130405035 2-3-4-5
50120130405035 2-3-4-550120130405035 2-3-4-5
50120130405035 2-3-4-5
 
50320140501005
5032014050100550320140501005
50320140501005
 
50120140504014
5012014050401450120140504014
50120140504014
 
Virginia woolf caso clinico
Virginia woolf caso clinicoVirginia woolf caso clinico
Virginia woolf caso clinico
 
Fred i congelacions
Fred  i congelacionsFred  i congelacions
Fred i congelacions
 
MADELEINE SARAI CAMACHO MORENO
MADELEINE SARAI CAMACHO MORENOMADELEINE SARAI CAMACHO MORENO
MADELEINE SARAI CAMACHO MORENO
 
TIC 8-2
TIC 8-2TIC 8-2
TIC 8-2
 
L12402 vts - ktghk - hvtctkd 01
L12402 vts - ktghk - hvtctkd 01L12402 vts - ktghk - hvtctkd 01
L12402 vts - ktghk - hvtctkd 01
 
La verdadera familia
La verdadera familiaLa verdadera familia
La verdadera familia
 
Maricela presentacion
Maricela presentacionMaricela presentacion
Maricela presentacion
 
Recomanats ficcio català 2013
Recomanats ficcio català 2013Recomanats ficcio català 2013
Recomanats ficcio català 2013
 
Herramientas Digitales
Herramientas DigitalesHerramientas Digitales
Herramientas Digitales
 
Horarios gimnasio olimpo
Horarios gimnasio olimpoHorarios gimnasio olimpo
Horarios gimnasio olimpo
 

Similar to 20120140504007 2

Research paper presentation shaiq
Research paper presentation shaiqResearch paper presentation shaiq
Research paper presentation shaiqShaiq Ali
 
Biosorption of cu(ii) ions from aqueous solution using
Biosorption of cu(ii) ions from aqueous solution usingBiosorption of cu(ii) ions from aqueous solution using
Biosorption of cu(ii) ions from aqueous solution usingAlexander Decker
 
Biosorption of cu(ii) ions from aqueous solution using
Biosorption of cu(ii) ions from aqueous solution usingBiosorption of cu(ii) ions from aqueous solution using
Biosorption of cu(ii) ions from aqueous solution usingAlexander Decker
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
 
Investigative studies on the inhibitive effects of Newbouldialaevis extracts ...
Investigative studies on the inhibitive effects of Newbouldialaevis extracts ...Investigative studies on the inhibitive effects of Newbouldialaevis extracts ...
Investigative studies on the inhibitive effects of Newbouldialaevis extracts ...researchinventy
 
Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...
Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...
Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...theijes
 
Experimental and theoretical investigations of some pyrazolo-pyrimidine deriv...
Experimental and theoretical investigations of some pyrazolo-pyrimidine deriv...Experimental and theoretical investigations of some pyrazolo-pyrimidine deriv...
Experimental and theoretical investigations of some pyrazolo-pyrimidine deriv...Al Baha University
 
Removal of Lead Ion Using Maize Cob as a Bioadsorbent
Removal of Lead Ion Using Maize Cob as a BioadsorbentRemoval of Lead Ion Using Maize Cob as a Bioadsorbent
Removal of Lead Ion Using Maize Cob as a BioadsorbentIJERA Editor
 
8100 10718-1-pb adsorption study
8100 10718-1-pb adsorption study8100 10718-1-pb adsorption study
8100 10718-1-pb adsorption studyTaghreed Al-Noor
 
Bioadsorption of Pb2+ and Cu2+ on Eucalyptus Camaldulensis Leaves
Bioadsorption of Pb2+ and Cu2+ on Eucalyptus Camaldulensis LeavesBioadsorption of Pb2+ and Cu2+ on Eucalyptus Camaldulensis Leaves
Bioadsorption of Pb2+ and Cu2+ on Eucalyptus Camaldulensis LeavesIJEAB
 
Determination of ksp of cu using aa c14123361t
Determination of ksp of cu using aa c14123361tDetermination of ksp of cu using aa c14123361t
Determination of ksp of cu using aa c14123361tMGH/Harvard Medical School
 

Similar to 20120140504007 2 (20)

Research paper presentation shaiq
Research paper presentation shaiqResearch paper presentation shaiq
Research paper presentation shaiq
 
Biosorption of cu(ii) ions from aqueous solution using
Biosorption of cu(ii) ions from aqueous solution usingBiosorption of cu(ii) ions from aqueous solution using
Biosorption of cu(ii) ions from aqueous solution using
 
Biosorption of cu(ii) ions from aqueous solution using
Biosorption of cu(ii) ions from aqueous solution usingBiosorption of cu(ii) ions from aqueous solution using
Biosorption of cu(ii) ions from aqueous solution using
 
20120140507002
2012014050700220120140507002
20120140507002
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
2015-Moosa-CNTs
2015-Moosa-CNTs2015-Moosa-CNTs
2015-Moosa-CNTs
 
30320130402003
3032013040200330320130402003
30320130402003
 
Investigative studies on the inhibitive effects of Newbouldialaevis extracts ...
Investigative studies on the inhibitive effects of Newbouldialaevis extracts ...Investigative studies on the inhibitive effects of Newbouldialaevis extracts ...
Investigative studies on the inhibitive effects of Newbouldialaevis extracts ...
 
Ijetr021101
Ijetr021101Ijetr021101
Ijetr021101
 
Ijetr021101
Ijetr021101Ijetr021101
Ijetr021101
 
Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...
Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...
Equilibrium and Kinetics Adsorption of Cadmium and Lead Ions from Aqueous Sol...
 
Applied surface science
Applied surface scienceApplied surface science
Applied surface science
 
Experimental and theoretical investigations of some pyrazolo-pyrimidine deriv...
Experimental and theoretical investigations of some pyrazolo-pyrimidine deriv...Experimental and theoretical investigations of some pyrazolo-pyrimidine deriv...
Experimental and theoretical investigations of some pyrazolo-pyrimidine deriv...
 
a1999k
a1999ka1999k
a1999k
 
JSEHR 1(1)-3
JSEHR 1(1)-3JSEHR 1(1)-3
JSEHR 1(1)-3
 
Removal of Lead Ion Using Maize Cob as a Bioadsorbent
Removal of Lead Ion Using Maize Cob as a BioadsorbentRemoval of Lead Ion Using Maize Cob as a Bioadsorbent
Removal of Lead Ion Using Maize Cob as a Bioadsorbent
 
8100 10718-1-pb adsorption study
8100 10718-1-pb adsorption study8100 10718-1-pb adsorption study
8100 10718-1-pb adsorption study
 
Taiwan (2016)
Taiwan (2016)Taiwan (2016)
Taiwan (2016)
 
Bioadsorption of Pb2+ and Cu2+ on Eucalyptus Camaldulensis Leaves
Bioadsorption of Pb2+ and Cu2+ on Eucalyptus Camaldulensis LeavesBioadsorption of Pb2+ and Cu2+ on Eucalyptus Camaldulensis Leaves
Bioadsorption of Pb2+ and Cu2+ on Eucalyptus Camaldulensis Leaves
 
Determination of ksp of cu using aa c14123361t
Determination of ksp of cu using aa c14123361tDetermination of ksp of cu using aa c14123361t
Determination of ksp of cu using aa c14123361t
 

More from IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

More from IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Recently uploaded

Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????blackmambaettijean
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 

Recently uploaded (20)

Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 

20120140504007 2

  • 1. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME 57 USING OF WASTED FILINGS OF IRON TO ADSORB METHYLENE BLUE DYE FROM AQUEOUS SOLUTION Prof. Dr. Mohammad Abid Moslim Al-Tufaily, Zahraa Ali Hmoud Department of Environmental Engineering, College of Engineering, Babylon university, Hilla, Iraq ABSTRACT Twenty five experiments for both untreated and treated iron filings were carried out at various initial concentrations of MB, flow rate, bed depth, and different ratios of iron filings .Two types of experiments were carried out, batch experiments and continuous flow (column system) experiments. Batch study showed that equilibrium isotherms for all the adsorbents used in the study are of favorable type. The equilibrium data for methylene blue adsorption on both adsorbent well fitted to the Langmuir equation, with maximum monolayer adsorption capacities of (24.47 mg/g) and (25.03 mg/g) exhibited by untreated iron filings and treated iron filings respectively. Key Words: (MB) Dye, Adsorption, Iron Filings, Batch Experiment, Continuous Experiment. 1. INTRODUCTION Dyestuff in wastewater from various industries, such as textiles, printing, pulp mills, leather, dyestuffs, and plastics, are stable and resistant to biodegradation because of its complex aromatic molecular structure. (El Qada et al., 2008; Han et al., 2008) Undoubtedly, the removal of dyestuff from waste effluents is of environmental importance. So far, various technologies including biological treatment, coagulation/flocculation, ozone treatment, chemical oxidation, membrane filtration, ion exchange, photocatalysis, and adsorption have been developed for the treatment of dye- containing effluents. Among them, adsorption is a reliable alternative due to its simplicity and high efficiency as well as the availability of a wide range of adsorbents (e.g., activated carbon, clay, biomass, polymer, zeolite, nanomaterials, etc.). In particular, activated carbon offers an attractive option for the efficient removal of various pollutants from waters because of its high surface area and porous structure. (Pelekani and Snoeyink, 2001) Unfortunately, the utilization of activated carbon on a large scale is limited by process engineering difficulties, such as its dispersion problem and INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) ISSN 0976 - 6480 (Print) ISSN 0976 - 6499 (Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME: www.iaeme.com/ijaret.asp Journal Impact Factor (2014): 7.8273 (Calculated by GISI) www.jifactor.com IJARET © I A E M E
  • 2. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME 58 regeneration cost ; therefore, many efforts have been made to investigate the use of various low cost organic adsorbents, which are cheap, easily available and disposable without regeneration. These materials are derived from natural resources, agricultural wastes or industrial by-products as peat, wood, barley rice husk, sawdust, biomass. Most of them are cellulose based and can be used without any previous thermal or chemical treatment (Subramani, 2002). A use of zero-valent iron (Fe 0 ) as reactive medium for wastewater treatment is one of the most promising techniques because the iron metal is of low-cost, is easy-to-obtain, and has good effectiveness and ability of minimizing contaminants. In addition, iron waste particles from industrial filings can be used as a zero-valent iron (Palaharn and Junyapoon 2004; Lee et al., 2003). Reactive barriers containing iron metals are currently being developed for in situ treatment technology (Puls et al., 1999). As zero-valent iron is a strong reducer, it has been used to remove several contaminants from wastewater such as halogenated hydrocarbon compounds, heavy metals, dyes, pesticides, and herbicides, which represent the main pollutants in wastewater (Sivavec and Horney, 1995). (Yang, 2005) conducted a study to investigate the key operational parameters of batch and continuous-flow. Zero–Valent Iron (ZVI) decolorization of a reactive anthraquinone dye and Reactive Blue 4 (RB4), batch decolorization kinetics indicates that ZVI decolorization of RB4 is a surface catalyzed, mass transfer-limited process. The results of a long-term continuous-flow ZVI decolorization column demonstrated that continuous-flow ZVI decolorization is feasible. However, column porosity losses and a shift of reaction kinetics occur in long-term column operation, leading to a decrease in column decolorization efficiency. ZVI decolorization of RB4 was successfully described with a pseudo first-order or a site saturation model. (Omar et al., 2011) the inhibition effect of methylene blue dye (MBD) on the corrosion of mild steel in 0.5 M sulphuric acid solution at 30°C was studied by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The results show that MBD is an excellent inhibitor even with very low concentration, and the adsorption of methylene blue dye (MBD) on the mild steel surface obeys Langmuir adsorption isotherm. Potentiodynamic polarization curves reveal that MBD behaves as a mixed-type inhibitor. EIS spectra exhibit one capacitive loop and confirm the inhibitive ability. Some thermodynamic functions of dissolution and adsorption processes were also determined. The obtained results indicated that MBD is chemically adsorbed on the steel surface. 2. MATERIALS AND METHODS 2.1 Adsorbate Material Methylene blue (MB) dye was chosen in this study because of its known strong adsorption onto solids (Chongrak et al., 1998), and is often serves as a model compound for removing organic contaminants and colored bodies from aqueous solutions. Methylene blue which is the most commonly used material for dying cotton, wood, and silk, is a basic cationic dye heterocyclic aromatic chemical compound with (C16H18N3ClS) as molecular formula and a molecular weight of 373.91 g/mol (Rastogi et al., 2008). 2.2 Adsorbent Material Iron filings used for this study was composed of commercial iron particles obtained from a peerless metal powder and abrasive workshop, where cutlasses and knifes are sharpened, and iron materials are made smooth. The mesh size of iron filings used in the study was of (0.5-1.4 mm).
  • 3. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME 59 2.3 Preparation of the Stock Solution Stock solution of methylene blue (1000 mg/l) and diluted to the required concentration of (100 mg/l) for calibration purposes according to the following equation: (m * v)1 = (m * v)2 (1) The pH of the prepared solutions for both batch and column experiments was equal to 5 based on the recommendation of (Noubactep, 2009). Adsorption experiments were carried out at temperature of 25±5 o C. 2.4 Calibration Curve Table1: Standard samples and absorbency for MB Dye Concentration (mg/l) Absorbency 5 0.4905 10 1.1366 15 1.6536 20 2.4948 25 3.1549 30 3.5228 con. = 8.3117*abs. R 2 = 0.9924 0 5 10 15 20 25 30 35 0 0.5 1 1.5 2 2.5 3 3.5 4 absorbency MBConcentration(mg/l) Figure 1: The calibration curve of UV spectrophotometer at (λmax=664nm) 2.5 Experimental procedure for Batch Experiments For isotherm studies, accurately different masses (0.3, 0.6, 0.9, 1.2, 1.5, 1.8 and 2.1) gm of adsorbent (treated and untreated iron filings) with the particle size of (0.5-1.4 mm) mixed with 100 ml of MB solution with initial concentration of 100 mg/l. The whole set was then placed on a Wrist shaker at 25ºC for 150 min. which is more than sufficient time to reach equilibrium. The pH of the solutions was equal to 5. At the end of the equilibrium period, samples were filtered using Whatmann No.1 filter paper in order to minimize the interference of the iron filings fines with the analysis. Percent removal (R%) was evaluated from the following equation: R%=((Ci-Ce)/Ci)*100 (2)
  • 4. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME 60 The concentrations of MB in the solutions before and after adsorption were determined using a double beam UV-visible spectrophotometer (UV 1600 PC Shimadzu) at 664 nm wavelength. The amount of adsorption at equilibrium, qe (mg/g), was calculated by the following equation (Mahir et al., 2004): qe=(Co-Ce)V/W (3) Where Co and Ce (mg/l) are the liquid phase concentrations of dye at the initial and equilibrium conditions, respectively. V is the volume of the solution (L) and W is the mass of dry adsorbent used (gm). Equilibrium isotherm treated and untreated iron filings Table (2): Equilibrium isotherm for untreated iron filings at (Co = 100 mg/l, PH=5, Temp.=25±5°C, Shaking time=150 min., V=0.1L) W (gm) Ce (mg/l) qe (mg/g) Removal% 0.3 26.6 24.47 73.4 0.6 7.8 15.37 92.2 0.9 2.5 10.83 97.5 1.2 2 8.17 98.00 1.5 1.6 6.56 98.4 1.8 1.19 5.49 98.81 2.1 0.99 4.71 99.01 Table (3): Equilibrium isotherm for treated iron filings at (Co = 100 mg/l , PH=5, Temp.=25±5°C, Shaking time=150 min., V=0.1L) W (gm) Ce (mg/l) qe (mg/g) Removal% 0.3 24.9 25.03 75.1 0.6 5.5 15.75 94.5 0.9 1.8 10.91 98.2 1.2 1.3 8.23 98.7 1.5 1.01 6.59 98.99 1.8 0.76 5.51 99.24 2.1 0.45 4.74 99.55 3. RESULTS AND DISCUSSION 3.1 Estimation of the Adsorption Isotherm Constants for Untreated and Treated Iron Filings System The Langmuir, Freundlich, and the equilibrium adsorption isotherms of methylene blue adsorption onto iron fillings of size (0.5-1.4 mm) at 25°C and pH=5 are shown in Figs.(2), (3) respectively for untreated iron filings and (4), (5) respectively for treated iron filings. The parameters for each model were obtained and presented in Table (2).
  • 5. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME 61 3.1.1 Untreated iron filings y = 0.0346x + 0.1807 R 2 = 0.9923 0 0.2 0.4 0.6 0.8 1 1.2 0 5 10 15 20 25 30 Ce (mg/l) Ce/qe(g/l) Figure 2: Langmuir adsorption Isotherm of MB onto untreated iron filing at 25o C and pH=5 y = 0.4885x + 0.7349 R 2 = 0.9518 0 0.5 1 1.5 2 -0.5 0 0.5 1 1.5 Log Ce Logqe Figure 3: Freundlich adsorption Isotherm of MB onto untreated iron filings at 25o C and pH=5 3.1.2 Treated iron filings Ce/qe = 0.0358*Ce + 0.1104 R 2 = 0.9952 0 0.2 0.4 0.6 0.8 1 1.2 0 5 10 15 20 25 30 Ce (mg/l) Ce/qe(g/l) Figure 4: Langmuir adsorption Isotherm of MB onto treated iron filings at 25o C and pH=5
  • 6. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME 62 Log qe = 0.4293*log Ce + 0.8438 R2 = 0.9636 0 0.5 1 1.5 2 -0.5 0 0.5 1 1.5 Log Ce Logqe Figure 5: Freundlich adsorption Isotherm of MB onto treated iron filings at 25o C and pH=5 3.2 Adsorption isotherm Adsorption equilibrium data of MB dye was fitted to the Langmiur and Freundlich isotherm models .These isotherms are expressed by the following equations qe=(q0 KL Ce)/(1+KL Ce ) (4) qe=Kf Ce 1/n (5) where; qe : Amount adsorbed per unit weight of adsorbent at equilibrium (mg/g), (mol/g) Ce : Equilibrium concentration of adsorbate in solution after adsorption (mg/g), (mol/L) Kf : Empirical Freundlich constant or capacity factor (mg/g), (mol/g) 1/n : Freundlich exponent q0 : Empirical Langmuir constant which represents maximum adsorption capacity (mg/g), (mol/g) KL : Empirical Langmuir constant (L/mg), (L/mol) Eq. (4) and (5) are frequently used in the linear form after rearrangement. The experimental data was also correlated by both linearised Langmuir and Freundlich equations (Eq.4 and Eq.5). For MB dye the Langmuir and Freundlich isotherm constant are summarized in table 1 for both treated and untreated iron filings. Table 4: Isotherm constants for MB dye Adsorption on treated and untreated iron filings Model Adsorbent Untreated iron filings Treated Iron filings Parameter Value Parameter Value Langmuir (eq. (3-3)) qo (mg/g) 28.90 qo (mg/g) 27.933 KL (l/mg) 0.1915 KL (l/mg) 0.324 RL 0.049 RL 0.029 R2 0.9923 R2 0.9952 Freundlich (eq. (3-1)) KF (mg/g(l/mg)1/n ) 5.431 KF (mg/g(l/mg)1/n ) 6.979 1/n 0.489 1/n 0.429 R2 0.9518 R2 0.9636
  • 7. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME 63 • In order to assess the different isotherms and their ability to correlate with experimental results, the coefficient of determination (R2 ) was employed to ascertain the fit of each isotherm with experimental data. From Table (4), the coefficient of determination values were higher for Langmuir than for Freundlich. This indicates that the Langmuir isotherm is clearly the better fitting isotherm for the experimental data. Conformation of the experimental data with Langmuir isotherm model indicates the homogeneous nature of the surfaces of the adsorbents used. • The value for the maximum adsorption capacities of (24.47 mg/g) and (25.03 mg/g) and the value of (removal %) of (73.4 %) and (75.1 %) exhibited by untreated iron filings and treated iron filings respectively. It is clear that iron filings is a very comparable material for the commercial activated carbon. • The values of (RL) were found to be (0.049) and (0.029) for untreated iron filings and treated iron filings respectively. This gain confirmed that the Langmuir isotherm was favorable for adsorption of MB onto the adsorbents used in this study. 0 5 10 15 20 25 30 0 10 20 30 Ce (mg/l) qe(mg/gironfillings) Experimental Langmuir Fruendlich Figure (6): Equilibrium adsorption Isotherm of MB onto untreated iron filings at 25o C and pH=5 0 5 10 15 20 25 30 0 10 20 30 Ce (mg/l) qe(mg/gironfillings) Experimental Langmuir Fruendlich Figure (7): Equilibrium adsorption Isotherm of MB onto treated iron filings at 25o C and pH=5 3.3 Column Experiments and Breakthrough Curves The performance of a fixed-bed column was described through the concept of the breakthrough curve. The time for breakthrough appearance and the shape of the breakthrough curve are very important characteristics for determining the operation and the dynamic response of an adsorption column. The loading behavior of MB to be adsorbed from solution in a fixed-bed is
  • 8. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME 64 usually expressed in term of C/Co as a function of time or volume of the effluent for a given bed height, giving a breakthrough curve. 3.3.1 Effect of Initial Dye Concentration The effect of influent MB concentration on the shape of the breakthrough curves was investigated by varying the initial MB concentration between (15, 30, 40, and 50) mg/l with constant iron filings bed height of 0.1m, solution pH of 5 and flow rate of 3.33 *10-6 m3 /s. The breakthrough curves of the above experiments were plotted in Fig.(8) for untreated iron filings and (9) for treated iron filings . It is clear that the breakthrough time decreased with increasing influent MB concentration. At lower influent MB concentrations, breakthrough curves were dispersed and breakthrough occurred slowly. As influent concentration increased, sharper breakthrough curves were obtained. These results demonstrate that the change of concentration gradient affects the saturation rate and breakthrough time. This can be explained by the fact that more adsorption sites were being covered as the MB concentration increases. 0 0.2 0.4 0.6 0.8 1 1.2 0 500 1000 1500 Time (min) C/C0 C0=50 mg/l C0=40 mg/l C0=30 mg/l C0=15 mg/l Figure (8): The experimental breakthrough data for adsorption of MB onto untreated iron filings at different initial concentrations, Q=3.33*10-6 m3/s, L=0.1 m, pH=5 0 0.2 0.4 0.6 0.8 1 1.2 0 500 1000 1500 Time (min) C/C0 C0=50 mg/l C0=40 mg/l C0=30 mg/l C0=15 mg/l Figure (9): The experimental breakthrough data for adsorption of MB onto treated iron filings at different initial concentrations, Q=3.33 *10-6 m3 /s, L=0.1 m, pH=5 3.3.2 Effects of Adsorbent Bed Depth Figure (10) for untreated iron filings and (11) for treated iron filings shows the breakthrough curves obtained for MB adsorption on the iron filings for four different iron filings bed depths of
  • 9. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME 65 0.05, 0.1, 0.15, and 0.2 m, at a constant flow rate of 3.33*10-6 m3 /sec, pH of 5 and MB initial concentration of 50 mg/l. Both the breakthrough and exhaustion time increased with increasing the bed depth. A higher MB uptake was also expected at a higher bed depth due to the increase in the specific surface area of the iron filings, which provided more binding sites for the dye to adsorb. Since the rate of adsorption is proportional to adsorbent surface area, then total quantity of solute removed from solution at any period of time will increase with increasing bed depth. 0 0.2 0.4 0.6 0.8 1 1.2 0 500 1000 1500 2000 Time (min) C/C0 L=0.05 m L=0.1 m L=0.15 m L=0.2 m Figure (10): The experimental breakthrough data for adsorption of MB onto untreated iron filings at different bed depths, Q=3.33 *10-6 m3/s, Co=50 mg/l, pH=5 0 0.2 0.4 0.6 0.8 1 1.2 0 500 1000 1500 2000 Time (min) C/C0 L=0.05 m L=0.1 m L=0.15 m L=0.2 m Figure (11): The experimental breakthrough data for adsorption of MB onto treated iron filings at different bed depths, Q=3.33 *10-6 m3 /s, Co=50 mg/l, pH=5 3.3.3 Effect of Solution Flow Rate To investigate the effect of flow rate on the adsorption of MB using iron fillings bed, the flow rate of the influent MB solution varied (2.2*10-6 , 3.33*10-6 , 4.17*10-6 , and 5.83*10-6 ) m3 /sec with constant bed depth of 0.1m, initial methylene blue (MB) concentration of 50 mg/l, and pH solution of 5 as shown by the breakthrough curves in Fig. (12) for untreated iron filings and Fig. (13) for treated iron filings . It can be seen that the breakthrough generally occurred faster with a higher flow rate. This is due to decreased contact time between the dye and the sorbent at higher flow rate, which results in lower bed utilization. Breakthrough time reaching saturation was increased significantly with a decrease in the flow rate. At a low rate of influent, MB had more time to be in contact with adsorbent, which resulted in a greater removal of MB molecules in column.
  • 10. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME 66 0 0.2 0.4 0.6 0.8 1 1.2 0 200 400 600 800 1000 Time (min) C/C0 Q=2.2*10^-6 m3/sec Q=3.33*10^-6 m3/sec Q=4.17*10^-6 m3/sec Q=5.83*10^-6 m3/sec Figure (12): The experimental breakthrough data for adsorption of MB onto untreated iron filings at different flow rates, L=0.1 m, Co=50 mg/l, pH=5 0 0.2 0.4 0.6 0.8 1 1.2 0 500 1000 1500 Time (min) C/C0 Q=2.2*10^-6 m3/sec Q=3.33*10^-6 m3/sec Q=4.17*10^-6 m3/sec Q=5.83*10^-6 m3/sec Figure (13): The experimental breakthrough data for adsorption of MB onto treated iron filings at different flow rates, L=0.1 m, Co=50 mg/l, pH=5 CONCLUSIONS Industrial waste materials (iron filings) appear as effective and cheap adsorbents for removal of MB dye from aqueous solution. Moreover, the materials could also be used for purification of water. The removal of MB dye from effluent is important to many countries of the world both environmentally and for water re-use. Treated and untreated iron filings have a very low economical value, can be an effective adsorbents for MB dye removal from aqueous system for environmental cleaning purposes. REFERENCES [1] Chongrak, K., Eric, H., Noureddine, A., and Jean, P. G., (1998), “Application of Methylene Blue Adsorption to Cotton Fiber Specific Surface Area Measurement, Part I: Methodology”, Journal of Cotton Science, Vol. 2, Pp. 164-173. [2] El Qada, E. N., Allen, S. J., Walker, G. M., (2008) “Adsorption of Basic Dyes from Aqueous Solution onto Activated Carbons”, Journal of Chemical Engineering, Vol.135, Pp.174–184.
  • 11. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 57-67 © IAEME 67 [3] Han, R., Ding, D., Xu, Y., Zou, W., Wang, Y., Li, Y., Zou, L., (2008), “Use of Rice Husk for Adsorption of Congo Red from Aqueous Solution in Column Made”, Bioresour. Technology, Vol.99, Pp.2938–2946. [4] Lee T., Lim H., Lee Y. And Park J-W., (2003), “Use of Waste Iron Metal for Removal of Cr(VI) from Water”, Chemosphere, Vol.53,Pp.479-485. [5] Mahir A., Ozkan D. and Mehmet D., (2004), “Removal of Acid Yellow 49 from Aqueous Solution by Adsorption”, Fresenius Environmental Bulletin, Vol. 13, No.11a, Pp.1112-1121. [6] Noubactep, C., (2009), “Characterizing the Discoloration of Methylene Blue in Fe0/H2O Systems”, Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, D - 37077 Göttingen, Germany. [7] Omar Benali, Lahcene Larabi, Salah Merah, Yahia Harek, (2011), "Influence of the Methylene Blue Dye (MBD) on the corrosion inhibition of mild steel in 0.5 M sulphuric acid, Part I: weight loss and electrochemical studies", Journal of Hazardous Material, Vol. 2,No.1,Pp. 39-48. [8] Palaharn, W. And Junyapoon, S., (2004), “Discoloration of Reactive Blue 5 in Aqueous Solutions by Waste Iron Particles”, International Conference on Integration of Science and Technology for Sustainable Development, Bangkok, Thailand, Vol. 1, Pp. 217-220. [9] Pelekani, C., Snoeyink, V. L. A., (2001), “Kinetic and Equilibrium Study of Competitive Adsorption Between Atrazine and Congo Red Dye on Activated Carbon: The Importance of Pore Size Distribution”, Carbon, Vol.39, Pp. 25–37. [10] Puls, R.W., Paul, C.J. and Powell, R.M., (1999), “The Application of in Situ Permeable Reactive (Zero-Valent Iron) Barrier Technology for the Remediation of Chromate Contaminated Groundwater: A Field Test”, Applied Geochemistry, Vol.14, Pp.989-1000. [11] Rastogi K., Sahu J. N., Meikap B. C., and Biswas M. N.,(2008),“ Removal of Methylene Blue from Wastewater using Fly Ash as an Adsorbent by Hydrocyclone”, Journal of Hazardous Materials, Vol.158, Pp.531-540. [12] Sivavec, T.J. And Horney, D.P., (1995), “Reductive Dechlorination of Chlorinated Ethenes by Iron Metal”, Proceedings of the 209th ACS National Meeting, Anaheim, California. [13] Subramani A., (2002), “Adsorption of Organic Pollutants onto Natural Adsorbents”, M.Sc. Thesis, Faculty of Mississippi State University, Department of Chemical Engineering. [14] Yang Hanbae, (2005), “Zero-Valent Iron Decolorization of the Anthraquinone Dye Reactive Blue 4 and Biodegradation Assessment of its Decolorization Products”, M.Sc. Thesis, Environmental Engineering, Department of Civil and Environmental Engineering. [15] P.Muthamilselvi, E.Poonguzhali and Dr. R.Karthikeyan, “Removal of Phenol from Aqueous Solutions by Adsorption”, International Journal of Advanced Research in Engineering & Technology (IJARET), Volume 3, Issue 2, 2012, pp. 280 - 288, ISSN Print: 0976-6480, ISSN Online: 0976-6499. [16] Rasha Salah Mahdiz, “Removal of the Blue Methylene Dye from an Aqueous Solution by using Powdered Corn Cob”, International Journal of Civil Engineering & Technology (IJCIET), Volume 5, Issue 1, 2014, pp. 21 - 34, ISSN Print: 0976 – 6308, ISSN Online: 0976 – 6316. [17] Prof.Dr.Mohammad Abid Moslim Al-Tufaily and Wisam Sh. Jabir Al- Salami, “Computerize RCRA, EWC and BC Hazardous Wastes Classification System using Visual Basic- 6 Language”, International Journal of Civil Engineering & Technology (IJCIET), Volume 5, Issue 1, 2014, pp. 111 - 124, ISSN Print: 0976 – 6308, ISSN Online: 0976 – 6316. [18] V.C.Padmanaban, Soumya.S.Prakash, Sherildas P, John Paul Jacob and Kishore Nelliparambil, “Biodegradation of Anthraquinone Based Compounds: Review”, International Journal of Advanced Research in Engineering & Technology (IJARET), Volume 4, Issue 4, 2013, pp. 74 - 83, ISSN Print: 0976-6480, ISSN Online: 0976-6499.