Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
Đánh thức tài năng toán học - Quyển 5 (11-13 tuổi) | Sách toán song ngữ singapore
Next

Share

Đánh thức tài năng toán học - Quyển 7 (14-15 tuổi) | Sách toán song ngữ singapore

Đánh thức tài năng toán học-Quyển 7 (14-15 tuổi) nằm trong bộ sách toán song ngữ Singapore của tác giả Terry Chew sẽ giúp các em phát triển tư duy tốt nhất.
Đặt mua sách tại: http://book.ihoc.me

Related Audiobooks

Free with a 30 day trial from Scribd

See all

Đánh thức tài năng toán học - Quyển 7 (14-15 tuổi) | Sách toán song ngữ singapore

  1. 1. Đánh thức tài năng toán học - 7 Maths Olympiad - The Next Lap ALL RIGHTS RESERVED Vietnam edition copyright © Online Education Game JSC, Lantabra, 2016. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers. ISBN: 978 - 604 - 62 - 5151 - 4 Printed in Viet Nam Bản quyền tiếng Việt thuộc về Công ty Cổ phần Trò chơi Giáo dục Trực tuyến, xuất bản theo hợp đồng chuyển nhượng bản quyền giữa Singapore Asia Publishers Pte Ltd và Công ty Cổ phần Trò chơi Giáo dục Trực tuyến, nhãn hiệu Lantabra 2016. Bản quyền tác phẩm đã được bảo hộ, mọi hình thức xuất bản, sao chụp, phân phối dưới dạng in ấn, văn bản điện tử, đặc biệt là phát tán trên mạng internet mà không được sự cho phép của đơn vị nắm giữ bản quyền là hành vi vi phạm bản quyền và làm tổn hại tới lợi ích của tác giả và đơn vị đang nắm giữ bản quyền. Không ủng hộ những hành vi vi phạm bản quyền. Chỉ mua bán bản in hợp pháp. ĐƠN VỊ PHÁT HÀNH: Công ty Cổ phần Giáo dục Sivina Địa chỉ: Số 1, Ngõ 814, Đường Láng, Phường Láng Thượng, Quận Đống Đa, TP. Hà Nội Điện thoại: (04) 8582 5555 Hotline: 097 991 9926 Website: http://lantabra.vn http://hocgioitoan.com.vn MỤC LỤC Foreword....................................................................................................4 Lời nói đầu.................................................................................................5 Chapter 1: Permutation and Combination........................................6 Chương 1: Chỉnh hợp và Tổ hợp.............................................................7 Chapter 2: Observation and Induction.............................................30 Chương 2: Quan sát và Quy nạp...........................................................31 Chapter 3: Other Operations..............................................................54 Chương 3: Các phép toán khác.............................................................55 Chapter 4: Numbering System...........................................................72 Chương 4: Hệ đếm..................................................................................73 Chapter 5: Basics of Probability.........................................................96 Chương 5: Xác suất cơ bản....................................................................97 Chapter 6: Lines andAngles.............................................................120 Chương 6: Đường thẳng và góc..........................................................121 Chapter 7: Triangles...........................................................................146 Chương 7: Tam giác.............................................................................147 Chapter 8: Pythagorean Theorem....................................................174 Chương 8: Định lí Pytago....................................................................175 Chapter 9: Profit, Loss.......................................................................202 Chương 9: Lợi nhuận và thua lỗ..........................................................203 Chapter 10:Area.................................................................................218 Chương 10: Diện tích...........................................................................219 Chapter 11: Pigeonhole Principle.....................................................244 Chương 11: Nguyên lí chuồng bồ câu.................................................245 Solutions...............................................................................................264
  2. 2. 4 Chapter 1 Simple Equation 5 Đánh thức tài năng toán học 7 Foreword Wrote British philosopher and mathematician Bertrand Russell in his 1917 essay Mysticism and Logic: “Mathematics, when rightly viewed, possesses not only truth, but supreme beauty – a beauty cold and austere, like that of sculpture.” Mathematics problems are not alike in the way they come to the students’ attention. As interesting as the diversified nature of Maths Olympiad questions is the constant curious nature of our minds. As a writer and coach of MO for many years, my curiosity intensifies each time I ask my students to present their solutions to problems as part of the training, that is, to articulate their thinking process and reasoning skills. In moments like these, I become the student – my mind filled with childlike anticipation and my students, in turn, become the master. The verbalisations of their thoughts are so full of imagination, fantasy and creativity that this exchange becomes an enjoyment. Perhaps there is as much for me to learn from them as they from me. Two things are obvious how some students have arrived at this state of mastery. Firstly, their tremendous acquisition of knowledge and the ability to make connection through this knowledge is highly remarkable. Secondly, and quite evidently, they have interest in what they persevere and are apparently gifted. Which attribute precedes the other, though, I cannot be too sure. Psychologists over the years have agreed on one thing, the like of which Canadian journalist Malcolm Gladwell mentioned in his book Outliers: The Story of Success: To be exceptionally good, or to reach the state of professional, one must put in something like 10,000 hours of effort in the practice. Though not immediately and readily comparable, the moral is nevertheless the same: practice, practice, practice. This book is written specially for my students and others alike who also enjoy mathematics. Terry Chew Lời nói đầu Năm 1917, nhà triết học và toán học người Anh Bertrand Russel đã viết trong tiểu luận Mysticism and Logic (tạm dịch: Các bí ẩn và suy luận) của mình rằng: “Khi nhìn nhận đúng đắn Toán học, ta không chỉ tìm được sự thật, mà còn thấy vẻ đẹp tối cao, vẻ đẹp lạnh lùng và khắc khổ, tựa như vẻ đẹp của các tác phẩm điêu khắc.” Đối với học trò, các bài toán không hề giống nhau. Những câu hỏi thú vị và phong phú trong bộ đề thi Olympic Toán luôn khiến chúng ta phải hiếu kì, phải bỏ công sức và tư duy để tìm hiểu. Là tác giả và thầy luyện thi Olympic Toán trong nhiều năm, sự hiếu kì của tôi tăng lên mỗi khi tôi yêu cầu học sinh của mình trình bày lời giải của các em về mỗi phần của bài tập, việc đó là tổng hoà của quá trình tư duy và kỹ năng lập luận của các em. Trong những khoảnh khắc như thế, tôi trở thành học sinh, tâm trí của tôi đầy những dự đoán ngây thơ, và khi đó học sinh của tôi trở thành người thầy. Việc thể hiện những suy nghĩ của các em rất giàu sức tưởng tượng, và sự sáng tạo chúng dung hòa với nhau tạo nên sự hứng thú. Có lẽ tôi học được nhiều điều từ các em hơn là các em học được từ tôi. Có hai điều hiển nhiên về cách thức một số học sinh đạt đến mức độ thành thạo. Thứ nhất, việc tiếp thu kiến thức của học sinh và khả năng kết hợp các kiến thức với nhau vô cùng quan trọng. Thứ hai, rõ ràng học trò phải có hứng thú với những gì các em kiên trì theo đuổi và các em cũng phải có năng khiếu nữa. Tuy nhiên, tôi không dám chắc niềm yêu thích hay năng khiếu quan trọng hơn. Trong những năm trở lại đây, các nhà tâm lý đã đồng ý về một điều, như nhà báo người Canada, Malcolm Gladwell đề cập trong cuốn Outliers: The Story of Success (Những kẻ xuất chúng) của ông: Để được đặc biệt xuất sắc hoặc để đạt được những điều lớn lao, chúng ta phải dành hết sức lực vào việc đó như dành 10.000 giờ tập trung vào việc thực hành. Mặc dù kết quả không thể thấy ngay lập tức và được kiểm chứng dễ dàng, nhưng cách thức vẫn như nhau: thực hành, thực hành và thực hành. Cuốn sách này được viết riêng cho học sinh của tôi và những người bạn yêu thích toán học khác. Terry Chew
  3. 3. 6 Chapter 1 Permutation and Combination 7Terry Chew Đánh thức tài năng toán học - 7 1 chỉnh hợp và tổ hợp Permutation is a form of arrangement that chooses r items from a total of n items and arranges them according to specified requirements. In general, there are r number of ways to select from n number of items for the first consideration of position. There will then be (r – 1) ways for the second position. It follows that there are (r – 2) ways for the third position and so on. We can write, for selecting r items from a total of n items for arrangement, n Pr = r(r – 1)(r – 2) ... (n – r + 1) where n Pr is the notation for permutation. For example, 10 P4 = 10 × (10 – 1)(10 – 2)(10 – 3) = 10 × 9 × 8 × 7 = 5040 Combination, on the other hand, is an arrangement of items regardless of position or order. Suppose we have n items and want to find out how many ways there are to group these items, with each group consisting of r items, the first step is to find n Pr . Next, to select r items for grouping, we write n Cr . Among each group of items, we can further arrange them into r Pr ways. We have n Pr = n Cr • r Pr n Cr = ​  n Pr   ___  r Pr  ​= ​  n • (n – 1) • (n – 2) ... (n – r + 1)     __________________________    r!  ​ For illustration purpose, suppose we want to know how many triangles can be drawn by connecting any 3 points out of 12 points on a circle, we have 12 C3 = ​  12 × 11 × 11   ___________   3 × 2 × 1  ​ = 220 triangles To find out the number of quadrilaterals, we have 12 C4 = ​  12 × 11 × 10 × 9    ______________    4 × 3 × 2 × 1  ​ = 495 quadrilaterals 1 permutation and combination Chỉnh hợp là một cách sắp xếp r phần tử được chọn từ một tổng n phần tử theo một thứ tự nhất định. Nhìn chung, có r cách để chọn từ n phần tử trong lần sắp xếp đầu tiên. Sau đó, có (r - 1) cách sắp xếp cho lần thứ 2. Tiếp đó là (r - 2) cách cho lần thứ ba, và cứ thế. Với việc chọn r phần tử từ một tổng n phần tử để sắp xếp, ta có thể viết, n Pr = r(r – 1)(r – 2) ... (n – r + 1) Với n Pr là kí hiệu của chỉnh hợp. Ví dụ, 10 P4 = 10 × (10 – 1)(10 – 2)(10 – 3) = 10 × 9 × 8 × 7 = 5040 Trong khi đó, tổ hợp là việc sắp xếp các phần tử mà không phân biệt vị trí, thứ tự của các phần tử đó. Giả sử, ta có n phần tử và muốn tìm xem có bao nhiêu cách để tập hợp các phần tử đó, với mỗi tập hợp gồm r phần tử, bước đầu tiên ta phải tính n Pr . Tiếp theo, để chọn r phần tử cho tập hợp, ta viết n Cr . Trong mỗi tập hợp phần tử, ta có thể sắp xếp chúng theo r Pr cách. Ta có n Pr = n Cr • r Pr n Cr = ​  n Pr   ___  r Pr  ​= ​  n • (n – 1) • (n – 2) ... (n – r + 1)     __________________________    r!  ​ Để minh hoạ, giả sử ta muốn biết có bao nhiêu tam giác có thể lập được bằng cách nối 3 trong số 12 điểm nằm trên một đường tròn, ta có 12 C3 = ​  12 × 11 × 11   ___________   3 × 2 × 1  ​ = 220 tam giác Để tìm số tứ giác, ta có 12 C4 = ​  12 × 11 × 10 × 9    ______________    4 × 3 × 2 × 1  ​ = 495 tứ giác
  4. 4. 8 Chapter 1 Permutation and Combination 9Terry Chew Đánh thức tài năng toán học - 7 Ví dụ 1 4 digits are selected from 0, 1, 2, 3, 4, 5, 6, 7 and 8 each time to form a 4-digit number. (a) How many such numbers are there? (b) How many of these numbers are odd? Solution: (a) Let us use 4 boxes to represent each number. Since the digits can be repeated, we have 8 choices (excluding 0) 9 choices 9 choices 9 choices 8 × 9 × 9 × 9 = 5832 numbers (b) We have 1, 3, 5, 7 to choose from in the ones digit. 8 choices (excluding 0) 9 choices 9 choices 4 choices 8 × 9 × 9 × 4 = 2592 numbers Example 1 Mỗi lần chọn 4 chữ số từ 0, 1, 2, 3, 4, 5, 6, 7 và 8 để tạo thành một số có 4 chữ số. (a) Hỏi ta lập được bao nhiêu số như vậy? (b) Trong đó có bao nhiêu số lẻ? Lời giải: (a) Ta lấy 4 ô vuông để đại diện cho từng số. Vì các chữ số có thể lặp lại, nên ta có 8 lựa chọn (không tính 0) 9 lựa chọn 9 lựa chọn 9 lựa chọn 8 × 9 × 9 × 9 = 5832 số (b) Ta chọn các số 1, 3, 5, 7 cho chữ số hàng đơn vị 8 lựa chọn (không tính 0) 9 lựa chọn 9 lựa chọn 4 lựa chọn 8 × 9 × 9 × 4 = 2592 số
  5. 5. 10 Chapter 1 Permutation and Combination 11Terry Chew Đánh thức tài năng toán học - 7 Ví dụ 2 One digit is selected from 0, 1, 2, 3, 4, 5, 6, 7 and 8 each time to form a 4-digit number. Each digit is used only once in each number. (a) How many such numbers are there? (b) How many of these numbers are even? Solution: (a) Since no digit in a number is repeated, we have 8 choices (excluding 0) 8 choices (including 0) left with 7 choices left with 6 choices 8 × 8 × 7 × 6 = 2688 numbers (b) We have 2, 4, 6 and 8 to choose from in the ones digit. Beginning from the ones digit, we have Case 1: 0 at tens or hundreds place. 7 choices (since 0 and one of the even numbers are selected) 7 choices (including 0) 6 choices left 4 choices (either 2, 4, 6 or 8) 7 × 7 × 6 × 4 = 1176 ways Case 2: 0 at ones place. 8 × 7 × 6 × 1 = 336 numbers 1176 + 336 = 1512 numbers Example 2 Trong các số 0, 1, 2, 3, 4, 5, 6, 7 và 8 chọn mỗi chữ số một lần để tạo thành một số có 4 chữ số. Mỗi chữ số được sử dụng duy nhất một lần trong mỗi số lập được. (a) Hỏi ta lập được bao nhiêu số như vậy? (b) Trong đó có bao nhiêu số chẵn? Lời giải: (a) Vì không có chữ số nào được lặp lại, ta có 8 lựa chọn (không bao gồm 0) 8 lựa chọn (bao gồm 0) còn 7 lựa chọn còn 6 lựa chọn 8 × 8 × 7 × 6 = 2688 số (b) Ta có 2, 4, 6 và 8 để chọn cho chữ số hàng đơn vị. Bắt đầu từ chữ số hàng đơn vị, ta có Trường hợp 1: 0 ở vị trí hàng chục hoặc hàng trăm. 7 lựa chọn (vì 0 và một số chẵn đã được chọn) 7 lựa chọn (bao gồm 0) còn 6 lựa chọn 4 lựa chọn (là 2, 4, 6 hoặc 8) 7 × 7 × 6 × 4 = 1176 cách Trường hợp 2: 0 ở vị trí hàng đơn vị. 8 × 7 × 6 × 1 = 336 số 1176 + 336 = 1512 số
  6. 6. 12 Chapter 1 Permutation and Combination 13Terry Chew Đánh thức tài năng toán học - 7 Example 3 How many numbers from 1 to 200 do not have the digit 2? Analysis: We can solve this problem the conventional way by counting numbers containing the digit 2, but that would be quite tedious. Solution: Case 1: 1-digit numbers: 1, 3, 4, 5, 6, 7, 8, 9. There are 8 such numbers. Case 2: 2-digit numbers: 8 choices (less 0 and 2) 9 choices (less 2) 8 × 9 = 72 numbers Case 3: 3-digit numbers, 1 choice (i.e. 1) 9 choices 9 choices 9 × 9 = 81 numbers 8 + 72 + 81 = 161 numbers Ví dụ 3 Có bao nhiêu số từ 0 đến 100 mà không có chữ số 2? Phân tích: Ta có thể giải bài toán này theo cách thông thường bằng cách đếm các số có chứa chữ số 2, nhưng như thế sẽ rất nhàm chán. Lời giải: Trường hợp 1: Số có 1 chữ số: 1, 3, 4, 5, 6, 7, 8, 9. Có 8 số như vậy. Trường hợp 2: Số có 2 chữ số: 8 lựa chọn (trừ đi 0 và 2) 9 lựa chọn (trừ đi 2) 8 × 9 = 72 số Trường hợp 3: Số có 3 chữ số: 1 lựa chọn (là 1) 9 lựa chọn 9 lựa chọn 9 × 9 = 81 số 8 + 72 + 81 = 161 số
  7. 7. 14 Chapter 1 Permutation and Combination 15Terry Chew Đánh thức tài năng toán học - 7 Example 4 There are 12 points on a circle. (a) How many triangles can be formed using any 3 points as their vertices? (b) How many quadrilaterals can be formed using any 4 points as their vertices? Analysis: The problem belongs to one of combination, because we are choosing a line segment ab to be one side, which has no difference from the line segment ba. Solution: (a) We choose 3 points from 12 points. 12 C2 = ​  12 × 11 × 10   ___________   3 × 2 × 1  ​ = 220 triangles (b) 12 C4 = ​  12 × 11 × 10 × 9    ______________    4 × 3 × 2 × 1  ​ = 495 quadrilaterals Example 5 Jane has 9 pieces of bite-size chocolate in the fridge. She is going to take at least 1 piece every day. In how many ways can she finish the chocolate? Analysis: Suppose we line up the chocolates as shown below. Suppose again Jane decides to finish them in the scenario described below. That means she takes 2 on the first day, 3 on the second day, and 1 each on the third, fourth and fifth day. How do we generalise this scenario? Solution: We can consider the line-up to have 8 intervals. Each interval is a decision to be made, i.e. either a “yes” or a “no”. 2 × 2 × ... × 2 = 28 8 times = 256 ways Ví dụ 4 Có 12 điểm nằm trên một đường tròn. (a) Hỏi có thể lập được bao nhiêu tam giác bằng cách lấy 3 điểm bất kì trong số đó làm đỉnh? (b) Hỏi có thể lập được bao nhiêu tứ giác bằng cách lấy 4 điểm bất kì trong số đó làm đỉnh? Phân tích: Đây là bài toán thuộc dạng tổ hợp, bởi vì ta chọn đoạn thẳng ab làm một cạnh, không khác gì nếu ta chọn đoạn ba. Lời giải: (a) Ta chọn 3 trong số 12 điểm. 12 C2 = ​  12 × 11 × 10   ___________   3 × 2 × 1  ​ = 220 tam giác (b) 12 C4 = ​  12 × 11 × 10 × 9    ______________    4 × 3 × 2 × 1  ​ = 495 tứ giác Ví dụ 5 Jane có 9 viên sô-cô-la trong tủ lạnh. Cô ấy dự định sẽ ăn ít nhất 1 viên mỗi ngày. Hỏi có bao nhiêu cách mà cô ấy có thể ăn hết chỗ sô-cô-la đó? Phân tích: Giả sử ta sắp xếp số sô-cô-la đó như hình dưới đây. Giả sử tiếp rằng Jane quyết định sẽ ăn hết chúng theo cách được mô tả dưới đây. Có nghĩa là cô ấy ăn 2 viên trong ngày đầu tiên, 3 viên trong ngày thứ hai và mỗi ngày một viên vào ngày thứ ba, thứ tư và thứ 5. Vậy ta sẽ khái quát hóa cách này như thế nào? Lời giải: Ta có thể xem xét hàng sô-cô-la đó với 8 khoảng cách. Mỗi khoảng cách chính là một quyết định được đưa ra, hoặc là “có” hoặc là “không”. 2 × 2 × ... × 2 = 28 8 lần = 256 cách
  • AnhhMinhh2

    Apr. 18, 2021
  • TinPhm100

    Mar. 12, 2021
  • RobertBaggio6

    Feb. 18, 2021
  • HongPhm136

    Aug. 15, 2020
  • TaiVinh1

    May. 26, 2020
  • DuDu82

    May. 28, 2019
  • LHngNguyn3

    Jun. 16, 2017

Đánh thức tài năng toán học-Quyển 7 (14-15 tuổi) nằm trong bộ sách toán song ngữ Singapore của tác giả Terry Chew sẽ giúp các em phát triển tư duy tốt nhất. Đặt mua sách tại: http://book.ihoc.me

Views

Total views

1,458

On Slideshare

0

From embeds

0

Number of embeds

79

Actions

Downloads

0

Shares

0

Comments

0

Likes

7

×