Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Scribd will begin operating the SlideShare business on September 24, 2020 As of this date, Scribd will manage your SlideShare account and any content you may have on SlideShare, and Scribd's General Terms of Use and Privacy Policy will apply. If you wish to opt out, please close your SlideShare account. Learn more.
Published on
Complexity measures are designed to capture complex behaviour and to quantify how complex that particular behaviour is. If a certain phenomenon is genuinely complex this means that it does not all of a sudden becomes simple by just translating the phenomenon to a different setting or framework with a different complexity value. It is in this sense that we expect different complexity measures from possibly entirely different fields to be related to each other. This work presents our work on a beautiful connection between the fractal dimension of space-time diagrams of Turing machines and their time complexity. Presented at Machines, Computations and Universality (MCU) 2013, Zurich, Switzerland.