SlideShare a Scribd company logo

A Survey on Automatic Software Evolution Techniques

Sung Kim
Sung Kim
Sung KimAssociate Prof.

Jindae's PQE

A Survey on Automatic Software Evolution Techniques

1 of 51
Download to read offline
A Survey on Automatic
Software Evolution
Techniques
Jindae Kim
PhD Qualifying Examination, Aug 31, 2015
HKUST
1
Overview
• Automatic Software Evolution
• Approaches
• Challenges
• Proposed Idea
2
Automatic Software Evolution
• An activity or a technique to evolve software
automatically.
• Supports software development process and increase
the productivity of human developers.
3
Area Techniques
Refactoring
Henkel et al.(2005), Murphy-Hill et al.(2007), Higo et al.
(2008), Tsantalis et al.(2009), Tsantalis et al.(2010),
Tsantalis et al.(2011), Dijkman et al.(2011)
Automatic Patch
Generation
Arcuri (2008), Arcuri et al.(2008), Dallmeier et al.(2009),
Weimer et al.(2009), Wei et al.(2010),
Orlov and Sipper (2011), Le Goues et al.(2012), Kim et al.
(2013), Nguyen et al.(2013), Long et al.(2015)
Automatic Runtime
Recovery
Rinard et al.(2004), Elkarablieh and Khursid (2008),
Dobolyi et al.(2008), Nagarajan et al.(2009), Perkins et al.
(2009), Carbin et al.(2011), Kling et al.(2012), Carzaniga et
al.(2013), Long et al.(2014)
Performance
Improvement
White et al.(2008) , Langdon et al.(2010), Orlov et al.
(2011), White et al.(2011), Harman et al.(2012), Langdon et
al.(2013), Petke et al.(2014)
4
Approches
5
Generate and Validate
• Most recent and popular approach in automatic
software evolution.
• Evolves a program in various aspects with validation.
6

Recommended

Source code comprehension on evolving software
Source code comprehension on evolving softwareSource code comprehension on evolving software
Source code comprehension on evolving softwareSung Kim
 
Partitioning Composite Code Changes to Facilitate Code Review (MSR2015)
Partitioning Composite Code Changes to Facilitate Code Review (MSR2015)Partitioning Composite Code Changes to Facilitate Code Review (MSR2015)
Partitioning Composite Code Changes to Facilitate Code Review (MSR2015)Sung Kim
 
Software Defect Prediction on Unlabeled Datasets
Software Defect Prediction on Unlabeled DatasetsSoftware Defect Prediction on Unlabeled Datasets
Software Defect Prediction on Unlabeled DatasetsSung Kim
 
Crowd debugging (FSE 2015)
Crowd debugging (FSE 2015)Crowd debugging (FSE 2015)
Crowd debugging (FSE 2015)Sung Kim
 
DeepAM: Migrate APIs with Multi-modal Sequence to Sequence Learning
DeepAM: Migrate APIs with Multi-modal Sequence to Sequence LearningDeepAM: Migrate APIs with Multi-modal Sequence to Sequence Learning
DeepAM: Migrate APIs with Multi-modal Sequence to Sequence LearningSung Kim
 
Cross-project Defect Prediction Using A Connectivity-based Unsupervised Class...
Cross-project Defect Prediction Using A Connectivity-based Unsupervised Class...Cross-project Defect Prediction Using A Connectivity-based Unsupervised Class...
Cross-project Defect Prediction Using A Connectivity-based Unsupervised Class...Feng Zhang
 
CrashLocator: Locating Crashing Faults Based on Crash Stacks (ISSTA 2014)
CrashLocator: Locating Crashing Faults Based on Crash Stacks (ISSTA 2014)CrashLocator: Locating Crashing Faults Based on Crash Stacks (ISSTA 2014)
CrashLocator: Locating Crashing Faults Based on Crash Stacks (ISSTA 2014)Sung Kim
 
STAR: Stack Trace based Automatic Crash Reproduction
STAR: Stack Trace based Automatic Crash ReproductionSTAR: Stack Trace based Automatic Crash Reproduction
STAR: Stack Trace based Automatic Crash ReproductionSung Kim
 

More Related Content

What's hot

Personalized Defect Prediction
Personalized Defect PredictionPersonalized Defect Prediction
Personalized Defect PredictionSung Kim
 
Deep API Learning (FSE 2016)
Deep API Learning (FSE 2016)Deep API Learning (FSE 2016)
Deep API Learning (FSE 2016)Sung Kim
 
REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...
REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...
REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...Sung Kim
 
Transfer defect learning
Transfer defect learningTransfer defect learning
Transfer defect learningSung Kim
 
Survey on Software Defect Prediction
Survey on Software Defect PredictionSurvey on Software Defect Prediction
Survey on Software Defect PredictionSung Kim
 
Dissertation Defense
Dissertation DefenseDissertation Defense
Dissertation DefenseSung Kim
 
Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)
Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)
Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)Sung Kim
 
Data collection for software defect prediction
Data collection for software defect predictionData collection for software defect prediction
Data collection for software defect predictionAmmAr mobark
 
Recommending Software Refactoring Using Search-based Software Enginnering
Recommending Software Refactoring Using Search-based Software EnginneringRecommending Software Refactoring Using Search-based Software Enginnering
Recommending Software Refactoring Using Search-based Software EnginneringAli Ouni
 
A Mono- and Multi-objective Approach for Recommending Software Refactoring
A Mono- and Multi-objective Approach for Recommending Software RefactoringA Mono- and Multi-objective Approach for Recommending Software Refactoring
A Mono- and Multi-objective Approach for Recommending Software RefactoringAli Ouni
 
ICSME 2016: Search-Based Peer Reviewers Recommendation in Modern Code Review
ICSME 2016: Search-Based Peer Reviewers Recommendation in Modern Code ReviewICSME 2016: Search-Based Peer Reviewers Recommendation in Modern Code Review
ICSME 2016: Search-Based Peer Reviewers Recommendation in Modern Code ReviewAli Ouni
 
Leveraging HPC Resources to Improve the Experimental Design of Software Analy...
Leveraging HPC Resources to Improve the Experimental Design of Software Analy...Leveraging HPC Resources to Improve the Experimental Design of Software Analy...
Leveraging HPC Resources to Improve the Experimental Design of Software Analy...Chakkrit (Kla) Tantithamthavorn
 
A Multi-Objective Refactoring Approach to Introduce Design Patterns and Fix A...
A Multi-Objective Refactoring Approach to Introduce Design Patterns and Fix A...A Multi-Objective Refactoring Approach to Introduce Design Patterns and Fix A...
A Multi-Objective Refactoring Approach to Introduce Design Patterns and Fix A...Ali Ouni
 
Cross-project defect prediction
Cross-project defect predictionCross-project defect prediction
Cross-project defect predictionThomas Zimmermann
 
The Road Not Taken: Estimating Path Execution Frequency Statically
The Road Not Taken: Estimating Path Execution Frequency StaticallyThe Road Not Taken: Estimating Path Execution Frequency Statically
The Road Not Taken: Estimating Path Execution Frequency StaticallyRay Buse
 
Partitioning composite code changes to facilitate code review
Partitioning composite code changes to facilitate code reviewPartitioning composite code changes to facilitate code review
Partitioning composite code changes to facilitate code reviewYida Tao
 
Improving Code Review Effectiveness Through Reviewer Recommendations
Improving Code Review Effectiveness Through Reviewer RecommendationsImproving Code Review Effectiveness Through Reviewer Recommendations
Improving Code Review Effectiveness Through Reviewer RecommendationsThe University of Adelaide
 
Review Participation in Modern Code Review: An Empirical Study of the Android...
Review Participation in Modern Code Review: An Empirical Study of the Android...Review Participation in Modern Code Review: An Empirical Study of the Android...
Review Participation in Modern Code Review: An Empirical Study of the Android...The University of Adelaide
 

What's hot (20)

Personalized Defect Prediction
Personalized Defect PredictionPersonalized Defect Prediction
Personalized Defect Prediction
 
Deep API Learning (FSE 2016)
Deep API Learning (FSE 2016)Deep API Learning (FSE 2016)
Deep API Learning (FSE 2016)
 
REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...
REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...
REMI: Defect Prediction for Efficient API Testing (

ESEC/FSE 2015, Industria...
 
Transfer defect learning
Transfer defect learningTransfer defect learning
Transfer defect learning
 
Survey on Software Defect Prediction
Survey on Software Defect PredictionSurvey on Software Defect Prediction
Survey on Software Defect Prediction
 
Dissertation Defense
Dissertation DefenseDissertation Defense
Dissertation Defense
 
Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)
Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)
Automatically Generated Patches as Debugging Aids: A Human Study (FSE 2014)
 
Data collection for software defect prediction
Data collection for software defect predictionData collection for software defect prediction
Data collection for software defect prediction
 
Recommending Software Refactoring Using Search-based Software Enginnering
Recommending Software Refactoring Using Search-based Software EnginneringRecommending Software Refactoring Using Search-based Software Enginnering
Recommending Software Refactoring Using Search-based Software Enginnering
 
A Mono- and Multi-objective Approach for Recommending Software Refactoring
A Mono- and Multi-objective Approach for Recommending Software RefactoringA Mono- and Multi-objective Approach for Recommending Software Refactoring
A Mono- and Multi-objective Approach for Recommending Software Refactoring
 
ICSME 2016: Search-Based Peer Reviewers Recommendation in Modern Code Review
ICSME 2016: Search-Based Peer Reviewers Recommendation in Modern Code ReviewICSME 2016: Search-Based Peer Reviewers Recommendation in Modern Code Review
ICSME 2016: Search-Based Peer Reviewers Recommendation in Modern Code Review
 
Leveraging HPC Resources to Improve the Experimental Design of Software Analy...
Leveraging HPC Resources to Improve the Experimental Design of Software Analy...Leveraging HPC Resources to Improve the Experimental Design of Software Analy...
Leveraging HPC Resources to Improve the Experimental Design of Software Analy...
 
A Multi-Objective Refactoring Approach to Introduce Design Patterns and Fix A...
A Multi-Objective Refactoring Approach to Introduce Design Patterns and Fix A...A Multi-Objective Refactoring Approach to Introduce Design Patterns and Fix A...
A Multi-Objective Refactoring Approach to Introduce Design Patterns and Fix A...
 
Cross-project defect prediction
Cross-project defect predictionCross-project defect prediction
Cross-project defect prediction
 
Cser13.ppt
Cser13.pptCser13.ppt
Cser13.ppt
 
The Road Not Taken: Estimating Path Execution Frequency Statically
The Road Not Taken: Estimating Path Execution Frequency StaticallyThe Road Not Taken: Estimating Path Execution Frequency Statically
The Road Not Taken: Estimating Path Execution Frequency Statically
 
Partitioning composite code changes to facilitate code review
Partitioning composite code changes to facilitate code reviewPartitioning composite code changes to facilitate code review
Partitioning composite code changes to facilitate code review
 
Improving Code Review Effectiveness Through Reviewer Recommendations
Improving Code Review Effectiveness Through Reviewer RecommendationsImproving Code Review Effectiveness Through Reviewer Recommendations
Improving Code Review Effectiveness Through Reviewer Recommendations
 
Review Participation in Modern Code Review: An Empirical Study of the Android...
Review Participation in Modern Code Review: An Empirical Study of the Android...Review Participation in Modern Code Review: An Empirical Study of the Android...
Review Participation in Modern Code Review: An Empirical Study of the Android...
 
Icsm19.ppt
Icsm19.pptIcsm19.ppt
Icsm19.ppt
 

Similar to A Survey on Automatic Software Evolution Techniques

Pareto-Optimal Search-Based Software Engineering (POSBSE): A Literature Survey
Pareto-Optimal Search-Based Software Engineering (POSBSE): A Literature SurveyPareto-Optimal Search-Based Software Engineering (POSBSE): A Literature Survey
Pareto-Optimal Search-Based Software Engineering (POSBSE): A Literature SurveyAbdel Salam Sayyad
 
Enabling Automated Software Testing with Artificial Intelligence
Enabling Automated Software Testing with Artificial IntelligenceEnabling Automated Software Testing with Artificial Intelligence
Enabling Automated Software Testing with Artificial IntelligenceLionel Briand
 
Scalable Software Testing and Verification of Non-Functional Properties throu...
Scalable Software Testing and Verification of Non-Functional Properties throu...Scalable Software Testing and Verification of Non-Functional Properties throu...
Scalable Software Testing and Verification of Non-Functional Properties throu...Lionel Briand
 
Agile maintenance
Agile maintenanceAgile maintenance
Agile maintenancearalikatte
 
SurfClipse-- An IDE based context-aware Meta Search Engine
SurfClipse-- An IDE based context-aware Meta Search EngineSurfClipse-- An IDE based context-aware Meta Search Engine
SurfClipse-- An IDE based context-aware Meta Search EngineMasud Rahman
 
Mutation Testing and MuJava
Mutation Testing and MuJavaMutation Testing and MuJava
Mutation Testing and MuJavaKrunal Parmar
 
TMPA-2015: The Application of Parameterized Hierarchy Templates for Automated...
TMPA-2015: The Application of Parameterized Hierarchy Templates for Automated...TMPA-2015: The Application of Parameterized Hierarchy Templates for Automated...
TMPA-2015: The Application of Parameterized Hierarchy Templates for Automated...Iosif Itkin
 
Effective Faraid system using rule based
 Effective Faraid system using rule based  Effective Faraid system using rule based
Effective Faraid system using rule based riniharani
 
Evolving The Optimal Relevancy Scoring Model at Dice.com: Presented by Simon ...
Evolving The Optimal Relevancy Scoring Model at Dice.com: Presented by Simon ...Evolving The Optimal Relevancy Scoring Model at Dice.com: Presented by Simon ...
Evolving The Optimal Relevancy Scoring Model at Dice.com: Presented by Simon ...Lucidworks
 
Ranking The Refactoring Techniques Based on The External Quality Attributes
Ranking The Refactoring Techniques Based on The External Quality AttributesRanking The Refactoring Techniques Based on The External Quality Attributes
Ranking The Refactoring Techniques Based on The External Quality AttributesIJRES Journal
 
Lecture #6. automation testing (andrey oleynik)
Lecture #6. automation testing (andrey oleynik)Lecture #6. automation testing (andrey oleynik)
Lecture #6. automation testing (andrey oleynik)Andrey Oleynik
 
Replication and Benchmarking in Software Analytics
Replication and Benchmarking in Software AnalyticsReplication and Benchmarking in Software Analytics
Replication and Benchmarking in Software AnalyticsUniversity of Zurich
 
Application of Genetic Algorithm in Software Engineering: A Review
Application of Genetic Algorithm in Software Engineering: A ReviewApplication of Genetic Algorithm in Software Engineering: A Review
Application of Genetic Algorithm in Software Engineering: A ReviewIRJESJOURNAL
 
Exploiting Context in Dealing with Programming Errors and Exceptions
Exploiting Context in Dealing with Programming Errors and ExceptionsExploiting Context in Dealing with Programming Errors and Exceptions
Exploiting Context in Dealing with Programming Errors and ExceptionsMasud Rahman
 
Artificial Intelligence for Automated Software Testing
Artificial Intelligence for Automated Software TestingArtificial Intelligence for Automated Software Testing
Artificial Intelligence for Automated Software TestingLionel Briand
 
Making Model-Driven Verification Practical and Scalable: Experiences and Less...
Making Model-Driven Verification Practical and Scalable: Experiences and Less...Making Model-Driven Verification Practical and Scalable: Experiences and Less...
Making Model-Driven Verification Practical and Scalable: Experiences and Less...Lionel Briand
 
Avoiding test hell
Avoiding test hellAvoiding test hell
Avoiding test hellYun Ki Lee
 

Similar to A Survey on Automatic Software Evolution Techniques (20)

Pareto-Optimal Search-Based Software Engineering (POSBSE): A Literature Survey
Pareto-Optimal Search-Based Software Engineering (POSBSE): A Literature SurveyPareto-Optimal Search-Based Software Engineering (POSBSE): A Literature Survey
Pareto-Optimal Search-Based Software Engineering (POSBSE): A Literature Survey
 
Enabling Automated Software Testing with Artificial Intelligence
Enabling Automated Software Testing with Artificial IntelligenceEnabling Automated Software Testing with Artificial Intelligence
Enabling Automated Software Testing with Artificial Intelligence
 
MuFinal
MuFinalMuFinal
MuFinal
 
Scalable Software Testing and Verification of Non-Functional Properties throu...
Scalable Software Testing and Verification of Non-Functional Properties throu...Scalable Software Testing and Verification of Non-Functional Properties throu...
Scalable Software Testing and Verification of Non-Functional Properties throu...
 
Agile maintenance
Agile maintenanceAgile maintenance
Agile maintenance
 
SurfClipse-- An IDE based context-aware Meta Search Engine
SurfClipse-- An IDE based context-aware Meta Search EngineSurfClipse-- An IDE based context-aware Meta Search Engine
SurfClipse-- An IDE based context-aware Meta Search Engine
 
Mutation Testing and MuJava
Mutation Testing and MuJavaMutation Testing and MuJava
Mutation Testing and MuJava
 
TMPA-2015: The Application of Parameterized Hierarchy Templates for Automated...
TMPA-2015: The Application of Parameterized Hierarchy Templates for Automated...TMPA-2015: The Application of Parameterized Hierarchy Templates for Automated...
TMPA-2015: The Application of Parameterized Hierarchy Templates for Automated...
 
Effective Faraid system using rule based
 Effective Faraid system using rule based  Effective Faraid system using rule based
Effective Faraid system using rule based
 
Evolving The Optimal Relevancy Scoring Model at Dice.com: Presented by Simon ...
Evolving The Optimal Relevancy Scoring Model at Dice.com: Presented by Simon ...Evolving The Optimal Relevancy Scoring Model at Dice.com: Presented by Simon ...
Evolving The Optimal Relevancy Scoring Model at Dice.com: Presented by Simon ...
 
Foutse_Khomh.pptx
Foutse_Khomh.pptxFoutse_Khomh.pptx
Foutse_Khomh.pptx
 
Code Reviews
Code ReviewsCode Reviews
Code Reviews
 
Ranking The Refactoring Techniques Based on The External Quality Attributes
Ranking The Refactoring Techniques Based on The External Quality AttributesRanking The Refactoring Techniques Based on The External Quality Attributes
Ranking The Refactoring Techniques Based on The External Quality Attributes
 
Lecture #6. automation testing (andrey oleynik)
Lecture #6. automation testing (andrey oleynik)Lecture #6. automation testing (andrey oleynik)
Lecture #6. automation testing (andrey oleynik)
 
Replication and Benchmarking in Software Analytics
Replication and Benchmarking in Software AnalyticsReplication and Benchmarking in Software Analytics
Replication and Benchmarking in Software Analytics
 
Application of Genetic Algorithm in Software Engineering: A Review
Application of Genetic Algorithm in Software Engineering: A ReviewApplication of Genetic Algorithm in Software Engineering: A Review
Application of Genetic Algorithm in Software Engineering: A Review
 
Exploiting Context in Dealing with Programming Errors and Exceptions
Exploiting Context in Dealing with Programming Errors and ExceptionsExploiting Context in Dealing with Programming Errors and Exceptions
Exploiting Context in Dealing with Programming Errors and Exceptions
 
Artificial Intelligence for Automated Software Testing
Artificial Intelligence for Automated Software TestingArtificial Intelligence for Automated Software Testing
Artificial Intelligence for Automated Software Testing
 
Making Model-Driven Verification Practical and Scalable: Experiences and Less...
Making Model-Driven Verification Practical and Scalable: Experiences and Less...Making Model-Driven Verification Practical and Scalable: Experiences and Less...
Making Model-Driven Verification Practical and Scalable: Experiences and Less...
 
Avoiding test hell
Avoiding test hellAvoiding test hell
Avoiding test hell
 

More from Sung Kim

Time series classification
Time series classificationTime series classification
Time series classificationSung Kim
 
Tensor board
Tensor boardTensor board
Tensor boardSung Kim
 
Heterogeneous Defect Prediction (

ESEC/FSE 2015)
Heterogeneous Defect Prediction (

ESEC/FSE 2015)Heterogeneous Defect Prediction (

ESEC/FSE 2015)
Heterogeneous Defect Prediction (

ESEC/FSE 2015)Sung Kim
 
How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...
How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...
How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...Sung Kim
 
A Survey on Dynamic Symbolic Execution for Automatic Test Generation
A Survey on  Dynamic Symbolic Execution  for Automatic Test GenerationA Survey on  Dynamic Symbolic Execution  for Automatic Test Generation
A Survey on Dynamic Symbolic Execution for Automatic Test GenerationSung Kim
 
MSR2014 opening
MSR2014 openingMSR2014 opening
MSR2014 openingSung Kim
 
Automatic patch generation learned from human written patches
Automatic patch generation learned from human written patchesAutomatic patch generation learned from human written patches
Automatic patch generation learned from human written patchesSung Kim
 
The Anatomy of Developer Social Networks
The Anatomy of Developer Social NetworksThe Anatomy of Developer Social Networks
The Anatomy of Developer Social NetworksSung Kim
 
A Survey on Automatic Test Generation and Crash Reproduction
A Survey on Automatic Test Generation and Crash ReproductionA Survey on Automatic Test Generation and Crash Reproduction
A Survey on Automatic Test Generation and Crash ReproductionSung Kim
 
How Do Software Engineers Understand Code Changes? FSE 2012
How Do Software Engineers Understand Code Changes? FSE 2012How Do Software Engineers Understand Code Changes? FSE 2012
How Do Software Engineers Understand Code Changes? FSE 2012Sung Kim
 
Defect, defect, defect: PROMISE 2012 Keynote
Defect, defect, defect: PROMISE 2012 Keynote Defect, defect, defect: PROMISE 2012 Keynote
Defect, defect, defect: PROMISE 2012 Keynote Sung Kim
 
Predicting Recurring Crash Stacks (ASE 2012)
Predicting Recurring Crash Stacks (ASE 2012)Predicting Recurring Crash Stacks (ASE 2012)
Predicting Recurring Crash Stacks (ASE 2012)Sung Kim
 
Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...
Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...
Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...Sung Kim
 
Software Development Meets the Wisdom of Crowds
Software Development Meets the Wisdom of CrowdsSoftware Development Meets the Wisdom of Crowds
Software Development Meets the Wisdom of CrowdsSung Kim
 
BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)
BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)
BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)Sung Kim
 
Self-defending software: Automatically patching errors in deployed software ...
Self-defending software: Automatically patching  errors in deployed software ...Self-defending software: Automatically patching  errors in deployed software ...
Self-defending software: Automatically patching errors in deployed software ...Sung Kim
 
ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)
ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)
ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)Sung Kim
 

More from Sung Kim (17)

Time series classification
Time series classificationTime series classification
Time series classification
 
Tensor board
Tensor boardTensor board
Tensor board
 
Heterogeneous Defect Prediction (

ESEC/FSE 2015)
Heterogeneous Defect Prediction (

ESEC/FSE 2015)Heterogeneous Defect Prediction (

ESEC/FSE 2015)
Heterogeneous Defect Prediction (

ESEC/FSE 2015)
 
How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...
How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...
How We Get There: A Context-Guided Search Strategy in Concolic Testing (FSE 2...
 
A Survey on Dynamic Symbolic Execution for Automatic Test Generation
A Survey on  Dynamic Symbolic Execution  for Automatic Test GenerationA Survey on  Dynamic Symbolic Execution  for Automatic Test Generation
A Survey on Dynamic Symbolic Execution for Automatic Test Generation
 
MSR2014 opening
MSR2014 openingMSR2014 opening
MSR2014 opening
 
Automatic patch generation learned from human written patches
Automatic patch generation learned from human written patchesAutomatic patch generation learned from human written patches
Automatic patch generation learned from human written patches
 
The Anatomy of Developer Social Networks
The Anatomy of Developer Social NetworksThe Anatomy of Developer Social Networks
The Anatomy of Developer Social Networks
 
A Survey on Automatic Test Generation and Crash Reproduction
A Survey on Automatic Test Generation and Crash ReproductionA Survey on Automatic Test Generation and Crash Reproduction
A Survey on Automatic Test Generation and Crash Reproduction
 
How Do Software Engineers Understand Code Changes? FSE 2012
How Do Software Engineers Understand Code Changes? FSE 2012How Do Software Engineers Understand Code Changes? FSE 2012
How Do Software Engineers Understand Code Changes? FSE 2012
 
Defect, defect, defect: PROMISE 2012 Keynote
Defect, defect, defect: PROMISE 2012 Keynote Defect, defect, defect: PROMISE 2012 Keynote
Defect, defect, defect: PROMISE 2012 Keynote
 
Predicting Recurring Crash Stacks (ASE 2012)
Predicting Recurring Crash Stacks (ASE 2012)Predicting Recurring Crash Stacks (ASE 2012)
Predicting Recurring Crash Stacks (ASE 2012)
 
Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...
Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...
Puzzle-Based Automatic Testing: Bringing Humans Into the Loop by Solving Puzz...
 
Software Development Meets the Wisdom of Crowds
Software Development Meets the Wisdom of CrowdsSoftware Development Meets the Wisdom of Crowds
Software Development Meets the Wisdom of Crowds
 
BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)
BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)
BugTriage with Bug Tossing Graphs (ESEC/FSE 2009)
 
Self-defending software: Automatically patching errors in deployed software ...
Self-defending software: Automatically patching  errors in deployed software ...Self-defending software: Automatically patching  errors in deployed software ...
Self-defending software: Automatically patching errors in deployed software ...
 
ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)
ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)
ReCrash: Making crashes reproducible by preserving object states (ECOOP 2008)
 

Recently uploaded

App Builder - Hierarchical Data Apps.pptx
App Builder - Hierarchical Data Apps.pptxApp Builder - Hierarchical Data Apps.pptx
App Builder - Hierarchical Data Apps.pptxPoojitha B
 
MSR2022_Hackathon.pdf
MSR2022_Hackathon.pdfMSR2022_Hackathon.pdf
MSR2022_Hackathon.pdfnatarajan8993
 
unit I lecture 3 - Software Process Models.pdf
unit I lecture 3 - Software Process Models.pdfunit I lecture 3 - Software Process Models.pdf
unit I lecture 3 - Software Process Models.pdfStephenTec
 
Self scaling Multi cloud nomad workloads
Self scaling Multi cloud nomad workloadsSelf scaling Multi cloud nomad workloads
Self scaling Multi cloud nomad workloadsBram Vogelaar
 
Microsoft 365 De Security pdf
Microsoft 365 De Security pdfMicrosoft 365 De Security pdf
Microsoft 365 De Security pdfMarkus Moeller
 
unit I lecture 4 - AGILE DEVELOPMENT AND PLAN-DRIVEN.pdf
unit I lecture 4 - AGILE DEVELOPMENT AND PLAN-DRIVEN.pdfunit I lecture 4 - AGILE DEVELOPMENT AND PLAN-DRIVEN.pdf
unit I lecture 4 - AGILE DEVELOPMENT AND PLAN-DRIVEN.pdfStephenTec
 
Manual de la Mezcladora SoundCraft Notepad -12Fx
Manual de la Mezcladora SoundCraft Notepad -12FxManual de la Mezcladora SoundCraft Notepad -12Fx
Manual de la Mezcladora SoundCraft Notepad -12Fxjavierdavidvelasco17
 
India's_Generative_AI_Startup_Landscape_Report_2023_Inc42 (1).pdf
India's_Generative_AI_Startup_Landscape_Report_2023_Inc42 (1).pdfIndia's_Generative_AI_Startup_Landscape_Report_2023_Inc42 (1).pdf
India's_Generative_AI_Startup_Landscape_Report_2023_Inc42 (1).pdfgranitesrijan
 
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)GDSCNiT
 
unit I lecture 5 - Software Development Life Cycle.pdf
unit I lecture 5 - Software Development Life Cycle.pdfunit I lecture 5 - Software Development Life Cycle.pdf
unit I lecture 5 - Software Development Life Cycle.pdfStephenTec
 
unit I lecture 2 - Software Engineering Ethics - Software Process.pdf
unit I lecture 2 - Software Engineering Ethics - Software Process.pdfunit I lecture 2 - Software Engineering Ethics - Software Process.pdf
unit I lecture 2 - Software Engineering Ethics - Software Process.pdfStephenTec
 
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...confluent
 
owasp top 10 security risk categories and CWE
owasp top 10 security risk categories and CWEowasp top 10 security risk categories and CWE
owasp top 10 security risk categories and CWEArun Voleti
 
100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTS
100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTS100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTS
100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTSi-engage
 
unit 1 lecture 1 - Introduction - Software Engineering Myths.pdf
unit 1 lecture 1 - Introduction - Software Engineering Myths.pdfunit 1 lecture 1 - Introduction - Software Engineering Myths.pdf
unit 1 lecture 1 - Introduction - Software Engineering Myths.pdfStephenTec
 
SATToSE_2023_Presentation_slideshare.pdf
SATToSE_2023_Presentation_slideshare.pdfSATToSE_2023_Presentation_slideshare.pdf
SATToSE_2023_Presentation_slideshare.pdfnatarajan8993
 
Get Your Hands Off the Teams Work.pdf
Get Your Hands Off the Teams Work.pdfGet Your Hands Off the Teams Work.pdf
Get Your Hands Off the Teams Work.pdfAngela Johnson
 
Steps to Build a PWA with Odoo.pdf
Steps to Build a PWA with Odoo.pdfSteps to Build a PWA with Odoo.pdf
Steps to Build a PWA with Odoo.pdfayushinwizards
 

Recently uploaded (20)

App Builder - Hierarchical Data Apps.pptx
App Builder - Hierarchical Data Apps.pptxApp Builder - Hierarchical Data Apps.pptx
App Builder - Hierarchical Data Apps.pptx
 
MSR2022_Hackathon.pdf
MSR2022_Hackathon.pdfMSR2022_Hackathon.pdf
MSR2022_Hackathon.pdf
 
unit I lecture 3 - Software Process Models.pdf
unit I lecture 3 - Software Process Models.pdfunit I lecture 3 - Software Process Models.pdf
unit I lecture 3 - Software Process Models.pdf
 
Self scaling Multi cloud nomad workloads
Self scaling Multi cloud nomad workloadsSelf scaling Multi cloud nomad workloads
Self scaling Multi cloud nomad workloads
 
Microsoft 365 De Security pdf
Microsoft 365 De Security pdfMicrosoft 365 De Security pdf
Microsoft 365 De Security pdf
 
Importance Of Smaket In Your Buussiness
Importance Of Smaket In Your BuussinessImportance Of Smaket In Your Buussiness
Importance Of Smaket In Your Buussiness
 
Features of IETM Software -Code and Pixels
Features of IETM Software -Code and PixelsFeatures of IETM Software -Code and Pixels
Features of IETM Software -Code and Pixels
 
unit I lecture 4 - AGILE DEVELOPMENT AND PLAN-DRIVEN.pdf
unit I lecture 4 - AGILE DEVELOPMENT AND PLAN-DRIVEN.pdfunit I lecture 4 - AGILE DEVELOPMENT AND PLAN-DRIVEN.pdf
unit I lecture 4 - AGILE DEVELOPMENT AND PLAN-DRIVEN.pdf
 
Manual de la Mezcladora SoundCraft Notepad -12Fx
Manual de la Mezcladora SoundCraft Notepad -12FxManual de la Mezcladora SoundCraft Notepad -12Fx
Manual de la Mezcladora SoundCraft Notepad -12Fx
 
India's_Generative_AI_Startup_Landscape_Report_2023_Inc42 (1).pdf
India's_Generative_AI_Startup_Landscape_Report_2023_Inc42 (1).pdfIndia's_Generative_AI_Startup_Landscape_Report_2023_Inc42 (1).pdf
India's_Generative_AI_Startup_Landscape_Report_2023_Inc42 (1).pdf
 
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
Open Sprintera (Where Open Source Sparks a Sprint of Possibilities)
 
unit I lecture 5 - Software Development Life Cycle.pdf
unit I lecture 5 - Software Development Life Cycle.pdfunit I lecture 5 - Software Development Life Cycle.pdf
unit I lecture 5 - Software Development Life Cycle.pdf
 
unit I lecture 2 - Software Engineering Ethics - Software Process.pdf
unit I lecture 2 - Software Engineering Ethics - Software Process.pdfunit I lecture 2 - Software Engineering Ethics - Software Process.pdf
unit I lecture 2 - Software Engineering Ethics - Software Process.pdf
 
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
Industry 4.0: Building the Unified Namespace with Confluent, HiveMQ and Spark...
 
owasp top 10 security risk categories and CWE
owasp top 10 security risk categories and CWEowasp top 10 security risk categories and CWE
owasp top 10 security risk categories and CWE
 
100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTS
100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTS100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTS
100 TOOLS TO MEASURE AND ANALYSE YOUR DIGITAL MARKETING EFFORTS
 
unit 1 lecture 1 - Introduction - Software Engineering Myths.pdf
unit 1 lecture 1 - Introduction - Software Engineering Myths.pdfunit 1 lecture 1 - Introduction - Software Engineering Myths.pdf
unit 1 lecture 1 - Introduction - Software Engineering Myths.pdf
 
SATToSE_2023_Presentation_slideshare.pdf
SATToSE_2023_Presentation_slideshare.pdfSATToSE_2023_Presentation_slideshare.pdf
SATToSE_2023_Presentation_slideshare.pdf
 
Get Your Hands Off the Teams Work.pdf
Get Your Hands Off the Teams Work.pdfGet Your Hands Off the Teams Work.pdf
Get Your Hands Off the Teams Work.pdf
 
Steps to Build a PWA with Odoo.pdf
Steps to Build a PWA with Odoo.pdfSteps to Build a PWA with Odoo.pdf
Steps to Build a PWA with Odoo.pdf
 

A Survey on Automatic Software Evolution Techniques