学位論文「ウェブ情報の信憑性分析に関する研究」

8,830 views

Published on

京都大学大学院情報学研究科社会情報学専攻の山本祐輔の学位論文「ウェブ情報の信憑性分析に関する研究」の公聴会発表資料である.

Published in: Technology
0 Comments
12 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
8,830
On SlideShare
0
From Embeds
0
Number of Embeds
5,497
Actions
Shares
0
Downloads
85
Comments
0
Likes
12
Embeds 0
No embeds

No notes for slide

学位論文「ウェブ情報の信憑性分析に関する研究」

  1. 1. 43% 57 %50 1 E. Sillence et al., Trust and mistrust of online health sites (CHI 2004) 2 S. Nakamura et al., Trustworthiness analysis of Web search results (ECDL 2007)
  2. 2. Q.
  3. 3. 1. 1. 2. 2. 1.2. 3. 4.3. 4. 3.4.
  4. 4. 1 2 2
  5. 5. 1 B.J. Stiff, Persuasive communication, 20022 B.J.Fogg & H.Tseng. The elements of computer credibility. In CHI 99, 1999.
  6. 6. d 1t d 2td 11 d 21
  7. 7. d 1t d 2td 11 d 21d 12 d 22d 13 d 23
  8. 8. Cred( pt ) = Sup( pt , pk ) Cred( pk ) Cred( pt ) Sup( pt , pk )
  9. 9. Cred( pt ) = Sup( pt , pk ) Cred( pk ) Cred( pt ) Sup( pt , pk )
  10. 10. data1 data2 Answers a1 Questions di1 di2 Slug dies when salting. Why? Slug does not die! dissimilar answer close close q1 a2 Slug mainly consists of water. similar question It loses important water when salted. dj1 dj2 qt Target data at similar answer Why is slug melt Salt absorbs water from slug when it is salted? (a) for Dominance question dissimilar answer q2 a3 Slug is a type of snail? Snai is a different type from slug. data2 News agency data1 di2 article (text) di1 Reuters(UK)close distant Ichiro is a super player dj1 Target data pair dj2 Super player Ichiro Kyodo Press(Japan) (c) for Diversity Jiji Press(Japan) Ichiro is not great data1 data2 di1 di2 distant distant dj1 dj2 (b) for Uniqueness
  11. 11. data1 data2 di1 di2 close close dj1 dj2 (a) for Dominancesup(pi , pj ) = α · supdom (pi , pj ) +β · supuni (pi , pj ) + γ · supdiv (pi , pj ) data1 data2 data2 di1 di2 data1 di2 di1 distant distant close distant dj1 dj1 dj2 dj2 (b) for Uniqueness (c) for Diversity
  12. 12. AB
  13. 13. sup dom ( pi , p j ) = sim entityname (oi , o j ) sim image (ii , i j )
  14. 14. sup uni ( pi , p j ) = (1 sim entityname (oi , o j )) (1 sim image (ii , i j ))
  15. 15. sup( pi , p j ) = 0.5 sup dom ( pi , p j ) + 0.5 sup uni ( pi , p j )
  16. 16. FALSE TRUE
  17. 17. 1 1
  18. 18. 1.2.3.4.
  19. 19. 1. 1. 2. 2. 1.2. 3. 4.3. 4. 3.4.
  20. 20. 5–––––
  21. 21. 1.2.3.4.
  22. 22. 1.2.3.4.
  23. 23. 1.2.3.4.
  24. 24. 1. 2.2. 1.3. 4.4. 3.
  25. 25. 1. 2.2. 1.3. 4.4. 3.
  26. 26. 960
  27. 27. 10 9
  28. 28. 10 9
  29. 29. 10 9
  30. 30. 10 9
  31. 31. 1. 1.2. 2.3. VS. 3.4. 4.
  32. 32. 1. 24. 1-3 10 1. 1. 2. 2. 3. 3. 4. 4.
  33. 33. 50A B
  34. 34. 16 Only Google Our system + Google141210 8 6 4 2 0 A B C D E F G H I J
  35. 35. 4 1 1 2
  36. 36. 20–
  37. 37. 26.1
  38. 38. 1.2.3.4.
  39. 39. 1.2.3.4.
  40. 40. 6– 5 4– : 7– Full paper 6 5– Short paper––– DC2– IPA

×