SlideShare a Scribd company logo

学位論文「ウェブ情報の信憑性分析に関する研究」

京都大学大学院情報学研究科社会情報学専攻の山本祐輔の学位論文「ウェブ情報の信憑性分析に関する研究」の公聴会発表資料である.

1 of 70
Download to read offline
学位論文「ウェブ情報の信憑性分析に関する研究」
43%
                                                              57 %

50




     1 E. Sillence et al., Trust and mistrust of online health sites (CHI 2004)
     2 S. Nakamura et al., Trustworthiness analysis of Web search results (ECDL 2007)
学位論文「ウェブ情報の信憑性分析に関する研究」
学位論文「ウェブ情報の信憑性分析に関する研究」
学位論文「ウェブ情報の信憑性分析に関する研究」
Q.

Recommended

博士論文公聴会スライド
博士論文公聴会スライド博士論文公聴会スライド
博士論文公聴会スライドTeruhiko Takagi
 
博士論文本審査スライド
博士論文本審査スライド博士論文本審査スライド
博士論文本審査スライドRyuichi Ueda
 
畳み込みネットワークによる高次元信号復元と異分野融合への展開
畳み込みネットワークによる高次元信号復元と異分野融合への展開 畳み込みネットワークによる高次元信号復元と異分野融合への展開
畳み込みネットワークによる高次元信号復元と異分野融合への展開 Shogo Muramatsu
 
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)
【基調講演】『深層学習の原理の理解に向けた理論の試み』 今泉 允聡(東大)MLSE
 
スペクトラル・クラスタリング
スペクトラル・クラスタリングスペクトラル・クラスタリング
スペクトラル・クラスタリングAkira Miyazawa
 
Ponanzaにおける強化学習とディープラーニングの応用
Ponanzaにおける強化学習とディープラーニングの応用Ponanzaにおける強化学習とディープラーニングの応用
Ponanzaにおける強化学習とディープラーニングの応用HEROZ-JAPAN
 

More Related Content

What's hot

Decision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence ModelingDecision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence ModelingYasunori Ozaki
 
「日本語LaTeX」が多すぎる件について
「日本語LaTeX」が多すぎる件について「日本語LaTeX」が多すぎる件について
「日本語LaTeX」が多すぎる件についてTakayuki Yato
 
EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monoc...
EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monoc...EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monoc...
EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monoc...Kazuyuki Miyazawa
 
A summary on “On choosing and bounding probability metrics”
A summary on “On choosing and bounding probability metrics”A summary on “On choosing and bounding probability metrics”
A summary on “On choosing and bounding probability metrics”Kota Matsui
 
[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...
[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...
[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...Deep Learning JP
 
Neural networks for Graph Data NeurIPS2018読み会@PFN
Neural networks for Graph Data NeurIPS2018読み会@PFNNeural networks for Graph Data NeurIPS2018読み会@PFN
Neural networks for Graph Data NeurIPS2018読み会@PFNemakryo
 
初めてのグラフカット
初めてのグラフカット初めてのグラフカット
初めてのグラフカットTsubasa Hirakawa
 
深層学習による非滑らかな関数の推定
深層学習による非滑らかな関数の推定深層学習による非滑らかな関数の推定
深層学習による非滑らかな関数の推定Masaaki Imaizumi
 
CVIM#11 3. 最小化のための数値計算
CVIM#11 3. 最小化のための数値計算CVIM#11 3. 最小化のための数値計算
CVIM#11 3. 最小化のための数値計算sleepy_yoshi
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII
 
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~RyuichiKanoh
 
グラフデータ分析 入門編
グラフデータ分析 入門編グラフデータ分析 入門編
グラフデータ分析 入門編順也 山口
 
情報検索における評価指標の最新動向と新たな提案
情報検索における評価指標の最新動向と新たな提案情報検索における評価指標の最新動向と新たな提案
情報検索における評価指標の最新動向と新たな提案Mitsuo Yamamoto
 
第8章 ガウス過程回帰による異常検知
第8章 ガウス過程回帰による異常検知第8章 ガウス過程回帰による異常検知
第8章 ガウス過程回帰による異常検知Chika Inoshita
 
統計的学習の基礎 第5章 基底展開と正則化
統計的学習の基礎 第5章 基底展開と正則化統計的学習の基礎 第5章 基底展開と正則化
統計的学習の基礎 第5章 基底展開と正則化Takayuki Uchiba
 
Hyperoptとその周辺について
Hyperoptとその周辺についてHyperoptとその周辺について
Hyperoptとその周辺についてKeisuke Hosaka
 

What's hot (20)

Decision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence ModelingDecision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence Modeling
 
「日本語LaTeX」が多すぎる件について
「日本語LaTeX」が多すぎる件について「日本語LaTeX」が多すぎる件について
「日本語LaTeX」が多すぎる件について
 
EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monoc...
EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monoc...EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monoc...
EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monoc...
 
A summary on “On choosing and bounding probability metrics”
A summary on “On choosing and bounding probability metrics”A summary on “On choosing and bounding probability metrics”
A summary on “On choosing and bounding probability metrics”
 
[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...
[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...
[DL輪読会]Continuous Adaptation via Meta-Learning in Nonstationary and Competiti...
 
Neural networks for Graph Data NeurIPS2018読み会@PFN
Neural networks for Graph Data NeurIPS2018読み会@PFNNeural networks for Graph Data NeurIPS2018読み会@PFN
Neural networks for Graph Data NeurIPS2018読み会@PFN
 
初めてのグラフカット
初めてのグラフカット初めてのグラフカット
初めてのグラフカット
 
直交領域探索
直交領域探索直交領域探索
直交領域探索
 
深層学習による非滑らかな関数の推定
深層学習による非滑らかな関数の推定深層学習による非滑らかな関数の推定
深層学習による非滑らかな関数の推定
 
CVIM#11 3. 最小化のための数値計算
CVIM#11 3. 最小化のための数値計算CVIM#11 3. 最小化のための数値計算
CVIM#11 3. 最小化のための数値計算
 
Fractional cascading
Fractional cascadingFractional cascading
Fractional cascading
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
 
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~
LightGBMを少し改造してみた ~カテゴリ変数の動的エンコード~
 
グラフデータ分析 入門編
グラフデータ分析 入門編グラフデータ分析 入門編
グラフデータ分析 入門編
 
情報検索における評価指標の最新動向と新たな提案
情報検索における評価指標の最新動向と新たな提案情報検索における評価指標の最新動向と新たな提案
情報検索における評価指標の最新動向と新たな提案
 
第8章 ガウス過程回帰による異常検知
第8章 ガウス過程回帰による異常検知第8章 ガウス過程回帰による異常検知
第8章 ガウス過程回帰による異常検知
 
リプシッツ連続性に基づく勾配法・ニュートン型手法の計算量解析
リプシッツ連続性に基づく勾配法・ニュートン型手法の計算量解析リプシッツ連続性に基づく勾配法・ニュートン型手法の計算量解析
リプシッツ連続性に基づく勾配法・ニュートン型手法の計算量解析
 
サイエンス領域におけるMLOpsの取り組み #yjtc
サイエンス領域におけるMLOpsの取り組み #yjtcサイエンス領域におけるMLOpsの取り組み #yjtc
サイエンス領域におけるMLOpsの取り組み #yjtc
 
統計的学習の基礎 第5章 基底展開と正則化
統計的学習の基礎 第5章 基底展開と正則化統計的学習の基礎 第5章 基底展開と正則化
統計的学習の基礎 第5章 基底展開と正則化
 
Hyperoptとその周辺について
Hyperoptとその周辺についてHyperoptとその周辺について
Hyperoptとその周辺について
 

More from Yusuke Yamamoto

Collaborative Filtering 2: Item-based CF
Collaborative Filtering 2: Item-based CFCollaborative Filtering 2: Item-based CF
Collaborative Filtering 2: Item-based CFYusuke Yamamoto
 
Collaborative Filtering 1: User-based CF
Collaborative Filtering 1: User-based CFCollaborative Filtering 1: User-based CF
Collaborative Filtering 1: User-based CFYusuke Yamamoto
 
データ解析技術2019
データ解析技術2019データ解析技術2019
データ解析技術2019Yusuke Yamamoto
 
研究室紹介資料2019
研究室紹介資料2019研究室紹介資料2019
研究室紹介資料2019Yusuke Yamamoto
 
ACM WebSci 2018 presentation/発表資料
ACM WebSci 2018 presentation/発表資料ACM WebSci 2018 presentation/発表資料
ACM WebSci 2018 presentation/発表資料Yusuke Yamamoto
 
不便益システムシンポジウム2018発表資料
不便益システムシンポジウム2018発表資料不便益システムシンポジウム2018発表資料
不便益システムシンポジウム2018発表資料Yusuke Yamamoto
 
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319Yusuke Yamamoto
 
批判的ウェブ情報探索リテラシー尺度の開発
批判的ウェブ情報探索リテラシー尺度の開発批判的ウェブ情報探索リテラシー尺度の開発
批判的ウェブ情報探索リテラシー尺度の開発Yusuke Yamamoto
 
東北地区大学図書館協議会 第72回総会講演資料20170922
東北地区大学図書館協議会 第72回総会講演資料20170922東北地区大学図書館協議会 第72回総会講演資料20170922
東北地区大学図書館協議会 第72回総会講演資料20170922Yusuke Yamamoto
 
WI2研究会 Vol.10発表資料20170708
WI2研究会 Vol.10発表資料20170708WI2研究会 Vol.10発表資料20170708
WI2研究会 Vol.10発表資料20170708Yusuke Yamamoto
 
情報学応用論20170622
情報学応用論20170622情報学応用論20170622
情報学応用論20170622Yusuke Yamamoto
 
ビッグデータとITイノベーション
ビッグデータとITイノベーションビッグデータとITイノベーション
ビッグデータとITイノベーションYusuke Yamamoto
 
ウェブと研究者との関わり方20150302
ウェブと研究者との関わり方20150302ウェブと研究者との関わり方20150302
ウェブと研究者との関わり方20150302Yusuke Yamamoto
 
大学の研究力を考える
大学の研究力を考える大学の研究力を考える
大学の研究力を考えるYusuke Yamamoto
 
研究力DOWNシナリオ
研究力DOWNシナリオ研究力DOWNシナリオ
研究力DOWNシナリオYusuke Yamamoto
 

More from Yusuke Yamamoto (20)

WISE2019 presentation
WISE2019 presentationWISE2019 presentation
WISE2019 presentation
 
Link Analysis
Link AnalysisLink Analysis
Link Analysis
 
Matrix Factorization
Matrix FactorizationMatrix Factorization
Matrix Factorization
 
Collaborative Filtering 2: Item-based CF
Collaborative Filtering 2: Item-based CFCollaborative Filtering 2: Item-based CF
Collaborative Filtering 2: Item-based CF
 
Collaborative Filtering 1: User-based CF
Collaborative Filtering 1: User-based CFCollaborative Filtering 1: User-based CF
Collaborative Filtering 1: User-based CF
 
データ解析技術2019
データ解析技術2019データ解析技術2019
データ解析技術2019
 
研究室紹介資料2019
研究室紹介資料2019研究室紹介資料2019
研究室紹介資料2019
 
ACM WebSci 2018 presentation/発表資料
ACM WebSci 2018 presentation/発表資料ACM WebSci 2018 presentation/発表資料
ACM WebSci 2018 presentation/発表資料
 
不便益システムシンポジウム2018発表資料
不便益システムシンポジウム2018発表資料不便益システムシンポジウム2018発表資料
不便益システムシンポジウム2018発表資料
 
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319
 
批判的ウェブ情報探索リテラシー尺度の開発
批判的ウェブ情報探索リテラシー尺度の開発批判的ウェブ情報探索リテラシー尺度の開発
批判的ウェブ情報探索リテラシー尺度の開発
 
東北地区大学図書館協議会 第72回総会講演資料20170922
東北地区大学図書館協議会 第72回総会講演資料20170922東北地区大学図書館協議会 第72回総会講演資料20170922
東北地区大学図書館協議会 第72回総会講演資料20170922
 
WI2研究会 Vol.10発表資料20170708
WI2研究会 Vol.10発表資料20170708WI2研究会 Vol.10発表資料20170708
WI2研究会 Vol.10発表資料20170708
 
情報学応用論20170622
情報学応用論20170622情報学応用論20170622
情報学応用論20170622
 
情報学総論20170623
情報学総論20170623情報学総論20170623
情報学総論20170623
 
情報学総論20170616
情報学総論20170616情報学総論20170616
情報学総論20170616
 
ビッグデータとITイノベーション
ビッグデータとITイノベーションビッグデータとITイノベーション
ビッグデータとITイノベーション
 
ウェブと研究者との関わり方20150302
ウェブと研究者との関わり方20150302ウェブと研究者との関わり方20150302
ウェブと研究者との関わり方20150302
 
大学の研究力を考える
大学の研究力を考える大学の研究力を考える
大学の研究力を考える
 
研究力DOWNシナリオ
研究力DOWNシナリオ研究力DOWNシナリオ
研究力DOWNシナリオ
 

Recently uploaded

"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys VasylievFwdays
 
My Journey towards Artificial Intelligence
My Journey towards Artificial IntelligenceMy Journey towards Artificial Intelligence
My Journey towards Artificial IntelligenceVijayananda Mohire
 
Enhancing Productivity and Insight A Tour of JDK Tools Progress Beyond Java 17
Enhancing Productivity and Insight  A Tour of JDK Tools Progress Beyond Java 17Enhancing Productivity and Insight  A Tour of JDK Tools Progress Beyond Java 17
Enhancing Productivity and Insight A Tour of JDK Tools Progress Beyond Java 17Ana-Maria Mihalceanu
 
AI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvementAI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvementMimmo Squillace
 
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...Product School
 
Battle of React State Managers in frontend applications
Battle of React State Managers in frontend applicationsBattle of React State Managers in frontend applications
Battle of React State Managers in frontend applicationsEvangelia Mitsopoulou
 
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, GoogleISPMAIndia
 
IT Nation Evolve event 2024 - Quarter 1
IT Nation Evolve event 2024  - Quarter 1IT Nation Evolve event 2024  - Quarter 1
IT Nation Evolve event 2024 - Quarter 1Inbay UK
 
"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura RochniakFwdays
 
How to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanHow to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanDatabarracks
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfSafe Software
 
Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...
Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...
Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...Adrian Sanabria
 
The Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product SchoolThe Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product SchoolProduct School
 
Confoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data scienceConfoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data scienceSusan Ibach
 
Campotel: Telecommunications Infra and Network Builder - Company Profile
Campotel: Telecommunications Infra and Network Builder - Company ProfileCampotel: Telecommunications Infra and Network Builder - Company Profile
Campotel: Telecommunications Infra and Network Builder - Company ProfileCampotelPhilippines
 
Imaging and Design for the Online Environment Part 1.pptx
Imaging and Design for the Online Environment Part 1.pptxImaging and Design for the Online Environment Part 1.pptx
Imaging and Design for the Online Environment Part 1.pptxPower Point
 
Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?MENGSAYLOEM1
 
My sample product research idea for you!
My sample product research idea for you!My sample product research idea for you!
My sample product research idea for you!KivenRaySarsaba
 
The Art of the Possible with Graph by Dr Jim Webber Neo4j.pptx
The Art of the Possible with Graph by Dr Jim Webber Neo4j.pptxThe Art of the Possible with Graph by Dr Jim Webber Neo4j.pptx
The Art of the Possible with Graph by Dr Jim Webber Neo4j.pptxNeo4j
 

Recently uploaded (20)

"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev"AIRe - AI Reliability Engineering", Denys Vasyliev
"AIRe - AI Reliability Engineering", Denys Vasyliev
 
My Journey towards Artificial Intelligence
My Journey towards Artificial IntelligenceMy Journey towards Artificial Intelligence
My Journey towards Artificial Intelligence
 
In sharing we trust. Taking advantage of a diverse consortium to build a tran...
In sharing we trust. Taking advantage of a diverse consortium to build a tran...In sharing we trust. Taking advantage of a diverse consortium to build a tran...
In sharing we trust. Taking advantage of a diverse consortium to build a tran...
 
Enhancing Productivity and Insight A Tour of JDK Tools Progress Beyond Java 17
Enhancing Productivity and Insight  A Tour of JDK Tools Progress Beyond Java 17Enhancing Productivity and Insight  A Tour of JDK Tools Progress Beyond Java 17
Enhancing Productivity and Insight A Tour of JDK Tools Progress Beyond Java 17
 
AI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvementAI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvement
 
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
 
Battle of React State Managers in frontend applications
Battle of React State Managers in frontend applicationsBattle of React State Managers in frontend applications
Battle of React State Managers in frontend applications
 
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
 
IT Nation Evolve event 2024 - Quarter 1
IT Nation Evolve event 2024  - Quarter 1IT Nation Evolve event 2024  - Quarter 1
IT Nation Evolve event 2024 - Quarter 1
 
"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak"Testing of Helm Charts or There and Back Again", Yura Rochniak
"Testing of Helm Charts or There and Back Again", Yura Rochniak
 
How to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response PlanHow to write an effective Cyber Incident Response Plan
How to write an effective Cyber Incident Response Plan
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
 
Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...
Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...
Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...
 
The Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product SchoolThe Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product School
 
Confoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data scienceConfoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data science
 
Campotel: Telecommunications Infra and Network Builder - Company Profile
Campotel: Telecommunications Infra and Network Builder - Company ProfileCampotel: Telecommunications Infra and Network Builder - Company Profile
Campotel: Telecommunications Infra and Network Builder - Company Profile
 
Imaging and Design for the Online Environment Part 1.pptx
Imaging and Design for the Online Environment Part 1.pptxImaging and Design for the Online Environment Part 1.pptx
Imaging and Design for the Online Environment Part 1.pptx
 
Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?Are Human-generated Demonstrations Necessary for In-context Learning?
Are Human-generated Demonstrations Necessary for In-context Learning?
 
My sample product research idea for you!
My sample product research idea for you!My sample product research idea for you!
My sample product research idea for you!
 
The Art of the Possible with Graph by Dr Jim Webber Neo4j.pptx
The Art of the Possible with Graph by Dr Jim Webber Neo4j.pptxThe Art of the Possible with Graph by Dr Jim Webber Neo4j.pptx
The Art of the Possible with Graph by Dr Jim Webber Neo4j.pptx
 

学位論文「ウェブ情報の信憑性分析に関する研究」

  • 2. 43% 57 % 50 1 E. Sillence et al., Trust and mistrust of online health sites (CHI 2004) 2 S. Nakamura et al., Trustworthiness analysis of Web search results (ECDL 2007)
  • 6. Q.
  • 10. 1. 1. 2. 2. 1. 2. 3. 4. 3. 4. 3. 4.
  • 12. 1 2 2
  • 13. 1 B.J. Stiff, Persuasive communication, 2002 2 B.J.Fogg & H.Tseng. The elements of computer credibility. In CHI 99, 1999.
  • 15. d 1t d 2t d 11 d 21
  • 16. d 1t d 2t d 11 d 21 d 12 d 22 d 13 d 23
  • 17. Cred( pt ) = Sup( pt , pk ) Cred( pk ) Cred( pt ) Sup( pt , pk )
  • 18. Cred( pt ) = Sup( pt , pk ) Cred( pk ) Cred( pt ) Sup( pt , pk )
  • 19. data1 data2 Answers a1 Questions di1 di2 Slug dies when salting. Why? Slug does not die! dissimilar answer close close q1 a2 Slug mainly consists of water. similar question It loses important water when salted. dj1 dj2 qt Target data at similar answer Why is slug melt Salt absorbs water from slug when it is salted? (a) for Dominance question dissimilar answer q2 a3 Slug is a type of snail? Snai is a different type from slug. data2 News agency data1 di2 article (text) di1 Reuters(UK) close distant Ichiro is a super player dj1 Target data pair dj2 Super player Ichiro Kyodo Press(Japan) (c) for Diversity Jiji Press(Japan) Ichiro is not great data1 data2 di1 di2 distant distant dj1 dj2 (b) for Uniqueness
  • 20. data1 data2 di1 di2 close close dj1 dj2 (a) for Dominance sup(pi , pj ) = α · supdom (pi , pj ) +β · supuni (pi , pj ) + γ · supdiv (pi , pj ) data1 data2 data2 di1 di2 data1 di2 di1 distant distant close distant dj1 dj1 dj2 dj2 (b) for Uniqueness (c) for Diversity
  • 21. A B
  • 22. sup dom ( pi , p j ) = sim entityname (oi , o j ) sim image (ii , i j )
  • 23. sup uni ( pi , p j ) = (1 sim entityname (oi , o j )) (1 sim image (ii , i j ))
  • 24. sup( pi , p j ) = 0.5 sup dom ( pi , p j ) + 0.5 sup uni ( pi , p j )
  • 27. FALSE TRUE
  • 28. 1 1
  • 31. 1. 1. 2. 2. 1. 2. 3. 4. 3. 4. 3. 4.
  • 36. 1. 2. 2. 1. 3. 4. 4. 3.
  • 37. 1. 2. 2. 1. 3. 4. 4. 3.
  • 39. 960
  • 40. 10 9
  • 41. 10 9
  • 42. 10 9
  • 43. 10 9
  • 45. 1. 1. 2. 2. 3. VS. 3. 4. 4.
  • 46. 1. 2 4. 1-3 10 1. 1. 2. 2. 3. 3. 4. 4.
  • 47. 50 A B
  • 48. 16 Only Google Our system + Google 14 12 10 8 6 4 2 0 A B C D E F G H I J
  • 49. 4 1 1 2
  • 61. 26.1
  • 69. 6 – 5 4 – : 7 – Full paper 6 5 – Short paper – – – DC2 – IPA