1 d structure materials


Published on

Published in: Technology, Business
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • Nanowires are extremely small. Nanowires can be made from a variety of conducting and semiconducting materials like copper, silver, zinc oxide and germanium. Nanowires can also be made from carbon nanotubes. Nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. Nanorods is a nanosized rod which having a size measured in nanometers. Their dimensions range from 1–100 nm. They may be synthesized from metals or semiconducting materials
  • 1 d structure materials

    1. 1. Supervisor: prof. Nguyen Huu Lam Group : Hoàng Văn Tiến Nguyễn Đình Trung Phạm Đức Thịnh Class: MSE –K54 -D structure materials HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY **** ADVANCED TRAINING PROGRAM ****
    2. 2. CONTENT • Introduction about nano materials • 1D materials • Fabrication • Application
    3. 3. INTRODUCTION • Materials with nano structure has attracted a great attention of the scientific commune in over the world because of their promise properties with quantum effects • Three kinds of nano structure: 0D (quantum dots), 2D (thin films), 1D ( nanowires, nanorods,…) • Many ways to fabricate the nanostructure: CVD, PVD, Spin-coating, Sol-gel, sputtering …
    4. 4. SOME 1-D NANOSTRUCTURES • Nanorods • Nanowires • Nanotubes
    5. 5. SYNTHESIS METHODS • Spontaneous growth • Evaporation (dissolation) condensation • Vapor –liquid –solid (VLS) growth • Stress- induced recrystallization • Templated – based synthesis • Electroplating and electrophoretic deposition • Colloid dispersion , melt or solution filling • Conversion with chemical reaction • Electrospinning
    6. 6. SPONTANEOUS GROWTH • A growth driven by reduction of Gibbs free energy or chemical potential. This can be from either recrystallization or a decrease in supersaturation. • Growth along a certain orientation faster than other direction – anisotropic growth. • For nanowire, growth occurs only along one direction, but no growth along other directions.
    8. 8. DISADVANTAGES OF EVAPORATION – CONDENSATION DEPOSITION • Nanowire grown by EC most likely have faceted morphology and are generally short in length with relatively small aspect ratios, particular when grown in liquid medium. • Anisotropic growth induced by axial imperfections, such as screw dislocation, microtwins and stacking faults, or by impurity poisoning, can result in the growth of nanowires with large aspect ratios.
    9. 9. VAPOR-LIQUID-SOLID (VLS) GROWTH - VLS is basically a Chemical Vapor Deposition (CVD) method driven in the presence of a Catalyst that can accelerate the rate of a reaction, without itself taking any part in the reaction. Most semiconductor nanomaterials of the group III-Nitrides class are synthesized by this technique. - Basic principle : heat a foil or powder of the group III metal such as Ga, In, or Al (source) in the presence of Nitrogen (N2) or NH3 at temperatures suitable for vaporization of the source and dissociation of the nitriding gas . -Catalysts : Transition metal and their oxides - The easiest form of catalyst used is a thin film of the transition metal (Fe, Ni, Co) or Noble metals like Gold (Au).
    10. 10. STEPS OF VLS GROWTH • A thin (~1-10 nm) film of catalyst(Au in our case) is deposited onto a wafer substrate(Si) by sputter deposition or thermal evaporation or any other means suitable. • Then the precursor (group III material :Ga) is heated to evaporate to take part in the reaction. The vapour is absorbed by the molten catalytic droplet which becomes supersatured and Ga gets precipitated to the bottom where it take part in reactionto form GaN. • As the melting point of GaN is >2500◦C which is much higher than the reaction temp (around 900◦C ) so it grows on the Si substrate in a Hexagonal crystal structure.
    12. 12. GROWTH MECHANISM Schematic illustration of metal-alloy catalyzed whisker growth
    13. 13. VLS Setup (GaN nanowires )
    14. 14. Wagner summarized the requirements for VLS growth 1. The catalyst or impurity must form a liquid solution with the crystalline material to be growth at the deposition temperature 2. The distribution coefficient of the catalyst or impurity must be less than unity at the deposition temperature 3. The equilibrium vapor pressure of the catalyst or impurity over the liquid droplet must be very small because it can reduce the total volume of the liquid droplet 4. The catalyst or impurity must be inert chemically ( not react with the chemical species ) 5. The interfacial energy plays a very important role 6. For a compound nanowire growth , one of the constituents can serve as the catalyst 7. For controlled unidirectional growth, the solid –liquid interface must be well defined crystallographycally .
    15. 15. ADVANTAGES OF THE VLS METHOD • Greatly lowered reaction energy compared to normal vapor-solid growth • Wires grow only in the areas activated by the metal catalysts and the size and position of the wires are determined by that of the metal catalysts. • This growth mechanism can also produce highly anisotropic nanowire arrays from a variety of materials
    16. 16. SUMMARY • Types of one - dimensional nanostructures : • nanorod, • nanowires, • nanotubes. • Synthesis methods • Growth mechanism • Applications