6 integral definida

11,539 views

Published on

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
11,539
On SlideShare
0
From Embeds
0
Number of Embeds
194
Actions
Shares
0
Downloads
58
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

6 integral definida

  1. 1. INTEGRAL DEFINIDA CAPÍTULO 6
  2. 2. Fórmulas fundamentales de integración• Antiderivada de f(x):
  3. 3. • Funciones trigonométricas, trigonométricas inversas:
  4. 4. Método de sustitución• Sustitución: Si: u= g(x) du= g’(x) dx
  5. 5. Integración por partes• Si f y g son funciones derivables, entonces: Formula de integración por partes• Si: u= f(x) y v= g(x) entonces: du=f’(x) dx y dv= g’(x) dx
  6. 6. Integrales trigonométricas• Integrales trigonométricas: operaciones algebraicas sobre funciones trigonométricas. Caso 1: n positivo impar y – . – .
  7. 7. Caso 2: Uno de los exponentes es entero positivo imparSi n es impar:Si m es impar:
  8. 8. Caso 3: Exponentes enteros positivos pares– .– .– .
  9. 9. Caso 4: n número entero positivo– .– .
  10. 10. Caso 5: n número entero positivo par– .– .
  11. 11. Caso 6: m número entero positivo par– .– .
  12. 12. Caso 7: n número entero positivo impar– .– .
  13. 13. Caso 8: n número entero positivo imparIntegración por partes:– .– .
  14. 14. Caso 9: n número entero positivo impar y m imparIntegración por partes:– .– .

×