Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Geom9point7 97

568 views

Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

Geom9point7 97

  1. 1. Chapter 2 - Vectors
  2. 2. Objectives <ul><li>Understand vectors and their components on the coordinate system </li></ul><ul><li>Find the magnitude of a vector </li></ul><ul><li>Understand vector addition by the parallelogram method and by the component method </li></ul><ul><li>Understand vectors in a state of equilibrium </li></ul>
  3. 3. Vectors on the Coordinate System <ul><li>Horizontal, vertical, and slanted vectors can be drawn on the coordinate system. </li></ul><ul><li>All 3 types of vectors have both length and direction. </li></ul>
  4. 4. Slanted Vectors <ul><li>The direction of slanted vectors is stated in terms of </li></ul><ul><ul><li>The angle formed by the vector and the horizontal axis. </li></ul></ul><ul><ul><li>The quadrant in which that angle is formed. </li></ul></ul><ul><li>The length of this vector is ___? </li></ul><ul><li>The direction of this vector is a ___ angle in the ___ quadrant. </li></ul>3 units Θ = 40˚
  5. 5. Slanted Vectors <ul><li>The angle which specifies the direction of a slanted vector is called its reference angle. </li></ul><ul><li>All slanted vectors have positive lengths. </li></ul><ul><li>Vectors are named using 2 letters: </li></ul><ul><ul><li>AB </li></ul></ul><ul><li>The first letter of the name is always where the vector begins. </li></ul>3 units Θ = 40˚ A B
  6. 6. Slanted Vectors <ul><li>Any slanted vector has a horizontal and a vertical component. </li></ul><ul><li>We can calculate these because we can make this a right triangle and use trig. </li></ul>3 units Θ = 40˚ A B
  7. 7. Magnitude <ul><li>How long is this vector? </li></ul><ul><li>Use the distance formula! </li></ul><ul><li>If A(x 1 , y 1 ) and B(x 2 , y 2 ) are points in a coordinate plane, then the distance between A and B is </li></ul><ul><li>AB = √(x 2 - x 1 ) 2 + (y 2 - y 1 ) 2 </li></ul><ul><li>AB = (4-0) 2 + (5-0) 2 </li></ul><ul><li>AB = √ 16 + 25 </li></ul><ul><li>AB = √41 </li></ul>4,5 0,0 A B
  8. 8. Magnitude <ul><li>Try another one: </li></ul><ul><li>AB = √(x 2 - x 1 ) 2 + (y 2 - y 1 ) 2 </li></ul><ul><li>AB = √(5-0) 2 + (4-2) 2 </li></ul><ul><li>AB 2 = √ 25 + 4 </li></ul><ul><li>AB = √29 = 5.4 </li></ul>5,4 0,2 A B
  9. 9. Component Form <ul><li>The component form of a vector is written as <x, y> where x is ( x 2 - x 1 ) and y is y 2 – y 1 </li></ul><ul><li>What is the component form of this vector? </li></ul><ul><li><(5-0), (4-2)> </li></ul><ul><li><5, 2> </li></ul>5,4 0,2 A B
  10. 10. Another example <ul><li>What is the component form of this vector? </li></ul><ul><li><4, 5> </li></ul>4,5 0,0 A B
  11. 11. Direction <ul><li>The direction of a vector is determined by the angle it makes with the horizontal line. </li></ul><ul><li>What direction is vector AB heading? </li></ul><ul><li>If AB represents the velocity of a moving ship, and the scale on the axis is miles per hour, how fast is the ship moving? </li></ul>3,4 0,0 A B
  12. 12. Equal and Parallel Vectors <ul><li>Two vectors are equal if they have the same magnitude and direction. </li></ul><ul><li>Two vectors are parallel if they have the same or opposite directions. </li></ul>3,4 0,0 A B
  13. 13. Slanted Vectors <ul><li>How do we calculate the horizontal component (AC)? </li></ul><ul><li>Cos θ = adj/hyp = x/3 </li></ul><ul><li>.7660 = x/3 </li></ul><ul><li>X = 3 * .7660 = 2.298 </li></ul><ul><li>sin θ = opp/hyp = x/3 </li></ul><ul><li>.6428 = x/3 </li></ul><ul><li>X = 3 * .7660 = 1.9284 </li></ul><ul><li>Use Pyth to check </li></ul><ul><li>2.298 2 + 1.9284 2 ?=? 3 2 </li></ul>3 units Θ = 40˚ A B C
  14. 14. Flipping the problem <ul><li>Tan = opp/adj </li></ul><ul><li>Tan θ = 4/5 = .8000 </li></ul><ul><li>Therefore θ contains 39˚ </li></ul><ul><li>Pyth can help us find the length of AB: </li></ul><ul><li>AB 2 = AC 2 +BC 2 </li></ul><ul><li>AB = 5 2 + 4 2 </li></ul><ul><li>AB = 25 + 16 = 41 </li></ul><ul><li>AB = 6.4 </li></ul><ul><li>How would you do this using sin and cos? </li></ul>Θ = ?˚ A B = (5, 4) C
  15. 15. Adding Vectors <ul><li>What does it mean to add two vectors? </li></ul><ul><li>Vector and Field (vector addition) </li></ul><ul><li>Why do we care? Using Vectors Video </li></ul>A= 5,2 0 C = -4,3 θ
  16. 16. Adding Vectors <ul><li>In Physics, the Law of Conservation and Momentum uses this. </li></ul><ul><li>Now how do we do that without the website? </li></ul><ul><li>Create a parallelogram and find the diagonal. </li></ul>A= 5,2 0 C = -4,3 θ
  17. 17. Adding Vectors <ul><li>Draw AQ which is both parallel to OC and equal in length to OC. </li></ul><ul><li>Draw CQ which is both parallel to OA and equal in length to OA </li></ul><ul><li>On a graph, we can see that the points of Q are 2,6 </li></ul>A= 5,2 0 C = -4,3 θ Q
  18. 18. Adding Vectors <ul><li>We can draw one line, then a vector from the origin to point Q: </li></ul><ul><li>This lets us find the point on graph paper without a calculator. Even using a calculator, this is a nice way to prove we’re doing things correctly. </li></ul><ul><li>Would this be precise if we weren’t using whole numbers? </li></ul>A= 5,2 0 C = -4,3 θ Q
  19. 19. Adding Vectors <ul><li>Another way to add vectors is by the component method. </li></ul><ul><ul><li>This provides accurate answers without the necessity of constructing parallelograms. </li></ul></ul><ul><li>Find the horizontal and vertical components, and add them </li></ul><ul><li>Horizontal: -3 + 5 =2 </li></ul><ul><li>Vertical: 4 + 2 = 6 </li></ul>A= 5,2 0 C = -3, 4 θ Q
  20. 20. Vector addition <ul><li>Positives and negatives are extremely important – be careful with them. </li></ul>A= 5,2 0 C = -4,3 θ Q
  21. 21. Vector addition <ul><li>To find the length and direction of the resultant vector, we use trig. </li></ul><ul><li>Use Pyth to find the length of OC </li></ul><ul><li>Use tan to find the reference angle of OC </li></ul>C= 25.6, 12.7 0 F = -7.9, 7.2 α Q
  22. 22. Applications <ul><li>How is vector addition used in physics? </li></ul><ul><li>Law of Conservation Video </li></ul>

×