POLA KESILAPAN MURID TAHUN TIGA WIRA MENYELESAIKAN<br />MASALAH BERCERITA DALAM MATEMATIK<br />Kajian ini bertajuk Pola Ke...
Item masalah yang mempunyai maklumat pengganggu.
Item masalah yang memerlukan dua langkah penyelesaian.</li></ul>Pengkaji tertarik untuk menggunakan Prosedur Temu Duga New...
Namun sekiranya jawapan salah, Prosedur Analisis Kesilapan Newman diaplikasikan seperti berikut:
membaca semula soalan
menerangkan kehendak soalan
mengintrepretasikan masalah bercerita kepada ayat matematik
Upcoming SlideShare
Loading in …5
×

Pola Kesilapan Murid Tahun Tiga Wira Menyelesaikan Draf2

3,487 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,487
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
156
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Pola Kesilapan Murid Tahun Tiga Wira Menyelesaikan Draf2

  1. 1. POLA KESILAPAN MURID TAHUN TIGA WIRA MENYELESAIKAN<br />MASALAH BERCERITA DALAM MATEMATIK<br />Kajian ini bertajuk Pola Kesilapan Murid Tahun Tiga Wira Menyelesaikan Masalah Bercerita Dalam Matematik yang telah dijalankan oleh Andy Peter dari Sekolah Kebangsaan Rakyat Tupong di Kuching. Saya mendapati tajuk kajian ini melalui jurnal kajian tindakan dari laman web http://www.ipbl.edu.my/BM/penyelidikan/jurnalpapers/jurnal2003/2003_andy.pdf Limitasi kajian adalah murid Tahap I iaitu Tahun Tiga Wira sahaja seramai 35 orang sebagai sampel kajian dan tidak mengambil kira faktor emosi, latar belakang keluarga, persekitaran sekolah dan kecacatan fizikal yang mempunyai kaitan dengan kesilapan murid dalam menyelesaikan masalah bercerita. Murid-murid diuji secara bertulis dengan menggunakan satu set soalan masalah bercerita yang mengandungi 12 soalan. <br />Saya mendapati penyataan masalah yang ingin dicungkil dalam kajian ini adalah mengenai kelemahan murid-murid untuk memahami konsep dan kemahiran matematik yang perlu dikenalpasti dan mengambil alternatif pemulihan terbaik bagi mengatasi kelemahan tersebut. Seterusnya tindakan ini mampu memupuk minat murid-murid untuk mempelajari mata pelajaran matematik. Sekiranya tindakan perlaksanaan untuk mengatasi permasalahan ini dipandang enteng, maka murid-murid gagal menggunakan kepintaran kognitif pada tahap maksimum dan kemahiran lain untuk menguasai mata pelajaran ini.<br />Relevan kajian tindakan yang dijalankan oleh Andy Peter adalah mengenal pasti pola kesilapan dan faktor-faktor yang menyebabkan murid-murid sukar untuk menyelesaikan masalah bercerita dalam subjek matematik. Kesilapan yang dimaksudkan adalah kesukaran menganalisis soalan tersebut yang merupakan soalan dalam bentuk empat operasi asas matematik iaitu tambah, tolak, darab dan bahagi. <br />Sepanjang pengamatan saya terhadap kajian ini, pengkaji cuba mengenalpasti penekanan terhadap tahap matriks penyelesaian masalah bercerita seperti berikut:<br /><ul><li>Item masalah tidak langsung.
  2. 2. Item masalah yang mempunyai maklumat pengganggu.
  3. 3. Item masalah yang memerlukan dua langkah penyelesaian.</li></ul>Pengkaji tertarik untuk menggunakan Prosedur Temu Duga Newman yang mana ia dapat mengintrepretasikan strategi berkesan untuk mengenal pasti pola kesilapan yang dilakukan oleh murid. Menurut Newman (1977, 1983) penggunaan hieraki sesuai digunakan apabila seseorang ingin menyelesaikan masalah bercerita. Maka Andy Peter cuba mengaplikasikan Prosedur Analisis Kesilapan Newman yang merupakan platform terbaik dalam Prosedur Temu Duga Newman. Sekiranya berlaku sebarang kegagalan pada mana-mana tahap hieraki pastinya akan mengganggu proses penyelesaian masalah. Berikut merupakan bentuk hieraki Prosedur Analisis Kesilapan Newman:<br />Rajah 1.1: Prosedur Analisis Kesilapan Newman<br />Selepas penelitian saya terhadap pemilihan model analisis yang dipilih oleh pengkaji, temuduga akan dijalankan secara individu hanya selepas murid gagal menjawab soalan yang sama dalam ujian kedua berdasarkan model analisis yang telah diubahsuai. Terdapat dua kemungkinan jawapan yang akan diberikan oleh murid semasa temuduga dijalankan iaitu:<br /><ul><li>Sekiranya jawapan kedua bagi soalan yang sama itu tepat, maka ia diklasifikasikan sebagai faktor kecuaian berlaku semasa ujian pertama.
  4. 4. Namun sekiranya jawapan salah, Prosedur Analisis Kesilapan Newman diaplikasikan seperti berikut:
  5. 5. membaca semula soalan
  6. 6. menerangkan kehendak soalan
  7. 7. mengintrepretasikan masalah bercerita kepada ayat matematik
  8. 8. membina operasi
  9. 9. akhirnya menemui jawapan yang dituliskan di atas sehelai kertas</li></ul>Andy Peter menggunakan instrumen pensel dan satu set kertas soalan yang mengandungi 12 soalan subjektif dalam ujian pertama dan ujian kedua serta temu duga secara individu berdasarkan model analisis yang telah diubahsuai. Ujian secara kumpulan dijalankan untuk menentukan tahap pemahaman murid. Masa yang diperuntukkan adalah 40 minit. Penyediaan set soalan mengikut item adalah seperti berikut:<br /><ul><li>Soalan Ujian Masalah BerceritaSoalan ujian mengandungi 12 soalan subjektifSoalan telah diubahsuai mengikut aras pengetahuan muridTerdapat 3 soalan bagi setiap operasi asas matematik iaitu tambah, tolak, darab dan bahagi Data dianalisis secara deskritifi) Pernyataan Langsung, Tidak ada Maklumat Pengganggu dan Memerlukan Satu Langkah Penyelesaian sahaja.Soalan : Ali ada 3 buah buku. Dia membeli 6 buah buku lagi. Berapa jumlah buku Ali ? ii) Pernyataan Tidak Langsung. Soalan : Abu ada 12 biji epal, selepas dia memberi 3 biji epal kepada adiknya. Berapa biji epal yang Abu ada pada mulanya ? iii) Mempunyai Maklumat Pengganggu. Soalan : Di kedai Pak Defi, satu bungkus kacang berharga 30 sen, satu batang pensel ialah 35 sen dan satu kotak mancis ialah 20 sen. Berapakah harga sebatang pensel dan sebungkus kacang ? iv) Masalah Memerlukan dua Langkah Penyelesaian. Soalan : Aji ada 27 ekor kambing. Ahmad ada lebih 11 ekor kambing daripada Aji. Berapa jumlah kambing yang budak-budak itu ada ? Temu Duga Individu Berdasarkan Prosedur Analisis Kesilapan NewmanMeninjau punca kesilapan murid adalah daripada: kecuaian, motivasi,kebolehbacaan,kefahaman, keupayaan untuk membuat transformasi (menukarkan masalah kepada ayat matematik), kemahiran proses (komputasi) ataumembuat pengkodan (menulis jawapan yang betul).</li></ul>Rajah 1.2 : Instrumen Kajian<br />Rajah 1.3 : Model Kajian Tindakan Kemmis<br />Saya cuba mengaitkan kajian ini dengan pengaplikasian model kajian tindakan Kemmis seperti dalam Rajah 1.3 yang telah diperkenalkan olehnya untuk memperincikan penggunaan pendekatan kajian tindakan dalam pendidikan. Elemen-elemen yang disentuhkan dalam model ini adalah seperti berikut:<br /><ul><li>Merancang
  10. 10. Pengkaji cuba mengenal pasti permasalahan murid dalam menghadapi kesukaran untuk menyelesaikan masalah bercerita dalam matematik.
  11. 11. Ujian pertama yang menggunakan 12 soalan subjektif disediakan.
  12. 12. Bertindak dan memerhati
  13. 13. Ujian pertama dilaksanakan dalam masa 40 minit.
  14. 14. Pengkaji memantau secara keseluruhan.
  15. 15. Reflek
  16. 16. Pengkaji mendapati murid gagal menjawab soalan dalam ujian pertama.
  17. 17. Semak semula perancangan
  18. 18. Perlaksanaan ujian kedua dijalankan dengan menggunakan set soalan yang sama seperti dalam ujian pertama.</li></ul>Selepas pengkaji menyemak semula perancangan yang telah dilaksanakan, beliau mendapati gelungan berurutan perlu dijalankan semula bagi mencapai objektif kajian. Sekiranya murid masih melakukan kesilapan yang sama dalam ujian kedua, pengkaji mengaplikasikan pendekatan Prosedur Analisis Kesilapan Newman melalui temuduga seperti turutan di bawah:<br /><ul><li>membaca semula soalan
  19. 19. menerangkan kehendak soalan
  20. 20. mengintrepretasikan masalah bercerita kepada ayat matematik
  21. 21. membina operasi
  22. 22. akhirnya menemui jawapan yang dituliskan di atas sehelai kertas</li></ul>Ringkasan analisis data yang dicapai dalam kajian adalah seperti di bawah:<br /><ul><li>Ujian pertama adalah melalui ujian diagnostik iaitu berdasarkan betul atau salah.
  23. 23. Ujian kedua dianalisis dari sesi temuduga yang dijalankan bagi mengenal pasti punca kegagalan murid semasa menjawab soalan.</li></ul>Pada akhir kajian, pengkaji mengenal pasti punca kelemahan murid adalah seperti berikut:<br /><ul><li>Kegagalan Membuat Transformasi
  24. 24. Punca utama kesilapan murid-murid.
  25. 25. Murid gagal mengintrepretasikan soalan bercerita kepada ayat matematik.
  26. 26. Murid keliru dalam operasi tambah untuk menyelesaikan masalah operasi darab dan menggunakan operasi tolak untuk menyelesaikan masalah bahagi.
  27. 27. Kecuaian Ketika Menjawab Soalan
  28. 28. Faktor kedua terbanyak.
  29. 29. Soalan bercerita mengandungi item maklumat pengganggu.
  30. 30. Murid lebih peka menjawab soalan secara individu berbanding menjawab soalan dalam kumpulan.
  31. 31. 3. Tidak Memahami Soalan
  32. 32. Murid-murid lemah dalam memahami konsep-konsep asas yang terdapat dalam soalan seperti konsep “lebih daripada”, “kurang daripada” dan juga “lebih 2 kali”.
  33. 33. Murid juga tidak dapat memikirkan angka yang terdapat dalam soalan seterusnya mengabaikan frasa kata yang terdapat pada sebelum sesuatu angka.
  34. 34. Murid hanya membaca dengan baik tetapi tidak dapat memahami apa kehendak soalan. </li></ul>4. Kurang Motivasi <br /><ul><li>Murid-murid lebih fokus ketika menjawab semula soalan dalam sesi temuduga.
  35. 35. Murid-murid perlu diberi sokongan untuk peningkatan tahap pemikirannya. </li></ul>5. Melakukan Kesilapan Komputasi <br /><ul><li>Hanya 10 daripada 35 (28.57%) kesilapan yang ditunjukkan oleh sampel kajian berpunca daripada kesilapan ketika melakukan komputasi.
  36. 36. Kesilapan ini terbukti apabila murid melakukan kesilapan dalam pendaraban nombor 1 digit dengan 3 digit dan pembahagian 3 digit dengan 1 digit tetapi adalah jelas kesilapan komputasi mempunyai pengaruh yang penting dalam menentukan pencapaian masalah bercerita murid.
  37. 37. Kesilapan komputasi hanya berlaku dalam operasi bahagi dan operasi darab sahaja </li></ul>Konklusi keseluruhan bagi kajian ini menunjukkan pengkaji berpuas hati dengan pencapaian yang telah dicapai oleh murid dan penglibatan sangat memberangsangkan kerana keseluruhan murid menyertai aktiviti ini dari pelbagai tahap pencapaian. Selain itu, pengkaji masih tidak berpuas hati kerana masih terdapat segelintir murid yang keliru dalam operasi darab dan bahagi. Kekurangan masa juga merupakan kelemahan kajian ini yang mana fokus untuk membimbing secara terperinci bagi murid yang lemah agak terhad.<br />

×