Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Los Algoritmos Genéticos y su Aplicación en la Optimización Diciembre 2009 Hamilton Mendoza Muñoz Ingeniería en Logística ...
Introducción a los Algoritmos Genéticos <ul><li>¿QUE SON? </li></ul><ul><li>Son una Técnica de Búsqueda y Optimización Est...
Algoritmo Genético Genérico Descripción de Grefenstette (192,287) modificada por Gen&Mitsuo (1997) <ul><li>Procedimiento: ...
Operadores en Algoritmos Genéticos <ul><li>Operadores Genéticos: </li></ul><ul><ul><li>Crossover (Entrecruzamiento) </li><...
Representación de un Algoritmo Genético  Gen&Mitsuo (1997) 01011 0 11 00100 1 01 Cálculo de Fitness Evaluación Selección N...
Sobre el Crossover <ul><li>Método Clásico:  escoger aleatoriamente un punto de corte en ambos padres y generar hijos combi...
Sobre las Mutaciones <ul><li>Método Clásico:  escoger aleatoriamente cierta cantidad de cromosomas y alterarlos aleatoriam...
Exploración vs. Explotación (I) <ul><li>Búsqueda:  método universal para resolver problemas donde no se puede conocer, a p...
Exploración vs. Explotación (II) <ul><li>Búsqueda Genética: </li></ul><ul><ul><li>conducta inicial :  diversidad genética,...
Exploración vs. Explotación (II) <ul><li>Búsqueda Genética:  términos... </li></ul><ul><ul><li>Cromosoma, Indivíduo :  Sol...
El Problema de la Codificación (I) <ul><li>Los Algoritmos Genéticos clásicos, llevan los valores de las soluciones a caden...
El Problema de la Codificación (II) <ul><li>Infactibilidad:  al decodificar un cromosoma, las restricciones hacen a la sol...
El Problema de la Codificación (III) <ul><li>Mapping (asignación de correspondencias):  al decodificar un cromosoma, las r...
Operador de Selección (I) <ul><li>Es la forma de imitar la Presión Selectiva Darwiniana </li></ul><ul><li>Es la fuerza que...
Operador de Selección (II) <ul><li>Mecanismos de Muestreo: </li></ul><ul><ul><li>Muestreo Estocástico (probabilidad de sel...
Algoritmos Genéticos Híbridos <ul><li>Ejemplo:  Evolución Lamarckiana </li></ul><ul><li>Procedimiento: Algorítmo Genético ...
Upcoming SlideShare
Loading in …5
×

Algoritmos Genticos Optimizacin Presentacin

1,152 views

Published on

Published in: Technology
  • Be the first to comment

  • Be the first to like this

Algoritmos Genticos Optimizacin Presentacin

  1. 1. Los Algoritmos Genéticos y su Aplicación en la Optimización Diciembre 2009 Hamilton Mendoza Muñoz Ingeniería en Logística y Transporte
  2. 2. Introducción a los Algoritmos Genéticos <ul><li>¿QUE SON? </li></ul><ul><li>Son una Técnica de Búsqueda y Optimización Estocástica </li></ul><ul><li>Se fundamenta en la mímica de los principios de evolución y genética </li></ul><ul><li>¿EN QUE SE DIFERENCIAN DE LA OPTIMIZACIÓN Y BÚSQUEDA CONVENCIONAL? </li></ul><ul><li>Trabajan con una codificación del conjunto solución, no la soluciones por si mismas. </li></ul><ul><li>Buscan en una población de soluciones, no en base a una sóla. </li></ul><ul><li>Usan información de “ganancia” (función de fitness), en lugar de derivadas, u otros conocimientos auxiliares. </li></ul><ul><li>Usan reglas de transición probabilísticas, no determinísticas. </li></ul>Goldberg (171)
  3. 3. Algoritmo Genético Genérico Descripción de Grefenstette (192,287) modificada por Gen&Mitsuo (1997) <ul><li>Procedimiento: Algoritmo Genético </li></ul><ul><li>begin </li></ul><ul><li>t<- 0; </li></ul><ul><li>inicializar P(t); </li></ul><ul><li>evaluar P(t); </li></ul><ul><li>Mientras (no condición de parada) hacer </li></ul><ul><ul><li>Recombinar P(t) para generar C(t); </li></ul></ul><ul><ul><li>evaluar C(t); </li></ul></ul><ul><ul><li>seleccionar P(t+1) de P(t)UC(t) </li></ul></ul><ul><ul><li>t<- t+1; </li></ul></ul><ul><li>end </li></ul><ul><li>end </li></ul>
  4. 4. Operadores en Algoritmos Genéticos <ul><li>Operadores Genéticos: </li></ul><ul><ul><li>Crossover (Entrecruzamiento) </li></ul></ul><ul><ul><li>Mutación </li></ul></ul><ul><li>Operadores Evolutivos </li></ul><ul><ul><li>Selección </li></ul></ul>
  5. 5. Representación de un Algoritmo Genético Gen&Mitsuo (1997) 01011 0 11 00100 1 01 Cálculo de Fitness Evaluación Selección Nueva Población Paradigma de Holland (220): “ seleccionar los padres a recombinar” Crossover soluciones 11001010 10111110 00100101 01011011 cromosomas 11001010 10111110 00100101 11001 110 10111 101 Mutación 11001010 10111110 00100101 01011011 00100 1 01 11001 110 10111 101 hijos decoding soluciones Ruleta ruleta
  6. 6. Sobre el Crossover <ul><li>Método Clásico: escoger aleatoriamente un punto de corte en ambos padres y generar hijos combinando los segmentos a cada lado del corte. </li></ul><ul><ul><li>Es útil para: </li></ul></ul><ul><ul><ul><li>Incentivar la mezcla de rasgos de los padres, en busca de hijos mejores que ambos padres </li></ul></ul></ul><ul><li>Parámetro Clásico: </li></ul><ul><li>“ Tasa de Crossover”. Pc=|C|/|P| </li></ul><ul><ul><li>Si Pc es alto: </li></ul></ul><ul><ul><ul><li>poca probabilidad de atascamiento en un óptimo local </li></ul></ul></ul><ul><ul><ul><li>alto costo explorando regiones poco prometedoras </li></ul></ul></ul>
  7. 7. Sobre las Mutaciones <ul><li>Método Clásico: escoger aleatoriamente cierta cantidad de cromosomas y alterarlos aleatoriamente. </li></ul><ul><ul><li>Es útil para: </li></ul></ul><ul><ul><ul><li>Regresar genes perdidos durante la selección para probarlos en otro contexto </li></ul></ul></ul><ul><ul><ul><li>Trayendo genes no presentes en la población inicial </li></ul></ul></ul><ul><li>Parámetro Clásico: </li></ul><ul><li>“ Tasa de Mutación”. Pm=% de los genes a mutar </li></ul><ul><ul><li>Si Pm es alto: </li></ul></ul><ul><ul><ul><li>los hijos perderán los rasgos de los padres. El algoritmo deja de aprender. </li></ul></ul></ul><ul><ul><li>Si Pm es bajo: </li></ul></ul><ul><ul><ul><li>muchos genes que pudiesen ser útiles, dejan de ser explorados. </li></ul></ul></ul>
  8. 8. Exploración vs. Explotación (I) <ul><li>Búsqueda: método universal para resolver problemas donde no se puede conocer, a priori, la secuencia de pasos que llevan hacia la solución. </li></ul><ul><li>Búsqueda Ciega: no usan información sobre el problema. </li></ul><ul><li>Búsqueda Heurística: usan información para guiar la búsqueda hacia las “mejores direcciones”. </li></ul><ul><li>Búsqueda Ideal: explotar la mejor solución, y explorar el espacio de búsqueda (46). </li></ul><ul><li>Hill-Climbing: explota la mejor solución, intentando mejorarla, ignorando la exploración de otras direcciones en el espacio de búsqueda. </li></ul><ul><li>Búsqueda Aleatoria: explora el espacio de búsqueda, ignorando la explotación para mejorar las regiones más prometedoras. </li></ul>
  9. 9. Exploración vs. Explotación (II) <ul><li>Búsqueda Genética: </li></ul><ul><ul><li>conducta inicial : diversidad genética, y operadores genéticos que tienden a explorar el espacio de solución </li></ul></ul><ul><ul><li>posteriormente: el operador de crossover explota la vecindad de cada solución </li></ul></ul><ul><ul><li>consecuencia: ocurre una explotación o una exploración , dependiendo del ambiente genético, y no estrictamente de los operadores. </li></ul></ul>fitness Espacio de solución promedio max padres hijos mutantes
  10. 10. Exploración vs. Explotación (II) <ul><li>Búsqueda Genética: términos... </li></ul><ul><ul><li>Cromosoma, Indivíduo : Solución (codificada) </li></ul></ul><ul><ul><li>Gen: Parte de la solución (bit en el caso binario) </li></ul></ul><ul><ul><li>Locus: Posición de un gen en un cromosoma </li></ul></ul><ul><ul><li>Alelo: Valor de un gen </li></ul></ul><ul><ul><li>Fenotipo: Solución de-codificada </li></ul></ul><ul><ul><li>Genotipo: Solución codificada </li></ul></ul>fitness Espacio de solución promedio max padres hijos mutantes
  11. 11. El Problema de la Codificación (I) <ul><li>Los Algoritmos Genéticos clásicos, llevan los valores de las soluciones a cadenas de números binarios (Holland). </li></ul><ul><li>La codificación binaria es incómoda para la mayoría de las aplicaciones </li></ul><ul><li>Se han creado codificaciones en números reales, en enteros, y codificaciones en matríces y árboles </li></ul><ul><li>Es esencial, para que un AG sea de utilidad, que la codificación sea apropiada. </li></ul>Operaciones Genéticas Evaluación y Selección Espacio genotípico Espacio fenotípico codificar de-codificar
  12. 12. El Problema de la Codificación (II) <ul><li>Infactibilidad: al decodificar un cromosoma, las restricciones hacen a la solución infactible </li></ul><ul><li>Ilegalidad: los operadores generan un cromosoma que no puede ser decodificado en una solución </li></ul><ul><li>En ambos casos, los cromosomas se pueden rechazar o reparar . </li></ul><ul><li>Adicionalmente las infactibilidades se pueden penalizar </li></ul>Espacio fenotípico Espacio fenotípico factible infactible ilegal Espacio genotípico
  13. 13. El Problema de la Codificación (III) <ul><li>Mapping (asignación de correspondencias): al decodificar un cromosoma, las restricciones hacen a la solución infactible </li></ul><ul><li>Ilegalidad: los operadores generan un cromosoma que no puede ser decodificado en una solución </li></ul>Espacio fenotípico 1-a-n n-a-1 1-a-1 Espacio genotípico
  14. 14. Operador de Selección (I) <ul><li>Es la forma de imitar la Presión Selectiva Darwiniana </li></ul><ul><li>Es la fuerza que conduce al algoritmo, su intensidad debe ser bien escogida </li></ul><ul><ul><li>Puede provocar una finalización prematura del algoritmo </li></ul></ul><ul><ul><li>Puede hacerlo mucho más lento de lo necesario </li></ul></ul><ul><li>Baja Presión Selectiva: se recomienda al inicio del algoritmo, para favorecer la exploración. </li></ul><ul><li>Alta Presión Selectiva: se recomienda al final del algoritmo para explotar las regiones más prometedoras. </li></ul><ul><li>Espacio de Muestreo: </li></ul><ul><ul><li>Regular: el tamaño es |P| </li></ul></ul><ul><ul><ul><li>Los hijos reemplazan a sus padres </li></ul></ul></ul><ul><ul><ul><li>Un padre es eliminado al nacer un hijo </li></ul></ul></ul><ul><ul><li>Aumentado: el tamaño es |P|+|C| </li></ul></ul><ul><ul><ul><li>Hijos y padres pueden ser seleccionados por igual </li></ul></ul></ul><ul><ul><ul><li>No hay que preocuparse por la influencia de las tasas crossover y mutación en la cantidad de hijos generados </li></ul></ul></ul>
  15. 15. Operador de Selección (II) <ul><li>Mecanismos de Muestreo: </li></ul><ul><ul><li>Muestreo Estocástico (probabilidad de selección es función de la aptitud) </li></ul></ul><ul><ul><li>Muestreo Determinístico (selecciona los más aptos) </li></ul></ul><ul><ul><li>Muestreo Mixto (ejemplo del torneo binario) </li></ul></ul><ul><li>Probabilidad de Selección: </li></ul><ul><ul><li>Proporcional a la aptitud </li></ul></ul><ul><ul><li>Por escalamiento y ordenamiento (ranking) </li></ul></ul><ul><li>Presión Selectiva: según el Neo-darwinismo puede clasificarse en </li></ul><ul><ul><li>Estabilizadora (elimina soluciones supra-normales e infra-normales) </li></ul></ul><ul><ul><li>Direccional (busca subir o bajar la media de la aptitud) </li></ul></ul><ul><ul><li>Disruptiva (busca eliminar las soluciones de aptitud media) </li></ul></ul>
  16. 16. Algoritmos Genéticos Híbridos <ul><li>Ejemplo: Evolución Lamarckiana </li></ul><ul><li>Procedimiento: Algorítmo Genético Híbrido </li></ul><ul><li>begin </li></ul><ul><li> t<- 0; </li></ul><ul><li>inicializar P(t); </li></ul><ul><li>evaluar P(t); </li></ul><ul><li>Mientras (no condición de parada) hacer </li></ul><ul><li>recombinar P(t) para generar C(t); </li></ul><ul><li>escalar localmente C(t); </li></ul><ul><li>evaluar C(t); </li></ul><ul><li>seleccionar P(t+1) de P(t) y C(t); </li></ul><ul><li> t<- t+1; </li></ul><ul><li>end </li></ul><ul><li>end </li></ul>

×