Upcoming SlideShare
×

# Data mining with R- regression models

894 views

Published on

Data mining with R - Regression Models
a curation from:Data Analysis Course
Weeks 4-5-6
https://www.coursera.org/course/dataanalysis

4 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

Views
Total views
894
On SlideShare
0
From Embeds
0
Number of Embeds
7
Actions
Shares
0
50
0
Likes
4
Embeds 0
No embeds

No notes for slide

### Data mining with R- regression models

1. 1. Data Mining with R Regression models Hamideh Iraj Hamideh.iraj@ut.ac.ir
2. 2. Slides Reference This a curation from: Data Analysis Course Weeks 4-5-6 https://www.coursera.org/course/dataanalysis
3. 3. Galton Data – Introduction library(UsingR) data(galton) ---------------------------------Head(galton) Tail(galton) ---------------------------------Dim(galton) Str(galton) summary(galton) summary(galton\$child)
4. 4. Galton Data - Plotting par(mfrow=c(1,2)) hist(galton\$child,col="blue",breaks=100) hist(galton\$parent,col="blue",breaks=100)
5. 5. Galton Data – Plotting pairs(galton) - cont.
6. 6. What is Regression Analysis? regression analysis is a statistical process for estimating the relationships among variables. It includes many techniques for modeling and analyzing several variables, when the focus is on the relationship between a dependent variable and one or more independent variables. http://en.wikipedia.org/wiki/Regression_analysis
7. 7. Fitting a line  plot(galton\$child, galton\$parent, pch=19,col="blue")  lm1 <- lm(child ~ parent, data=galton)  lines(galton\$parent,lm1\$fitted,col="red", lwd=3) The line width
8. 8. Plot Residuals plot(galton\$parent,lm1\$residuals,col="blue",pch=19) Abline (c(0,0),col="red",lwd=3)
9. 9. Linear Model Coefficients >Summary(lm1) lm1\$coeff
10. 10. Why care about model Accuracy? http://en.wikipedia.org/wiki/Linear_regression
11. 11. Model Accuracy Measures P-value Confidence Interval R2 Adjusted R2
12. 12. P-value Most Common Measure of Statistical Significance Idea: Suppose nothing is going on - how unusual is it to see the estimate we got? Some typical values (single test)  P < 0.05 (significant)  P < 0.01 (strongly significant)  P < 0.001 (very significant)
13. 13. Confidence intervals A confidence interval is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate confint(lm1,level=0.95) http://en.wikipedia.org/wiki/Confidence_interval
14. 14. 2 R R2 : the proportion of response variation "explained" by the regressors in the model. R2= 1 :the fitted model explains all variability in R2 = 0 indicates no 'linear' relationship (for straight line regression, this means that the straight line model is a constant line (slope=0, intercept=bar{y}) between the response variable and regressors). http://en.wikipedia.org/wiki/Coefficient_of_determination
15. 15. Adjusted R2 The use of an adjusted R2 (often written as bar R^2 and pronounced "R bar squared") is an attempt to take account of the phenomenon of the R2 automatically and spuriously increasing when extra explanatory variables are added to the model. http://en.wikipedia.org/wiki/Coefficient_of_determination
16. 16. Predicting with Linear Regression coef(lm1)[1] + coef(lm1)[2]*80 newdata <- data.frame(parent=80) predict(lm1,newdata)
17. 17. Multivariate Linear Regression WHO childhood hunger data Dataset: http://apps.who.int/gho/athena/data/GHO/WHOSIS_000008.csv?pr ofile=text&filter=COUNTRY:* hunger <- read.csv("./hunger.csv") hunger <- hunger[hunger\$Sex!="Both sexes", ]
18. 18. Multivariate Linear Regression – cont. lmBoth <- lm(hunger\$Numeric ~ hunger\$Year + hunger\$Sex) lmBoth2 <- lm(hunger\$Numeric ~ hunger\$Year + hunger\$Sex + hunger\$Sex*hunger\$Year) Same slopes Different slopes
19. 19. Model Selection step(lmBoth2)
20. 20. Regression with Factor Variables  Outcome is still quantitative  Covariate(s) are factor variables  Fitting lines = fitting means  Want to evaluate contribution of all factor levels at once
21. 21. Regression with Factor Variables – cont.  Dataset: http://www.rossmanchance.com/iscam2/data/movies03RT.txt  movies <- read.table("./movies.txt",sep="t",header=T,quote="")  head(movies)
22. 22. Regression with Factor Variables – cont.  lm2 <- lm(movies\$score ~ as.factor(movies\$rating))  summary(lm2)