SlideShare a Scribd company logo
1 of 19
Download to read offline
Copyright © 2014 NTT DATA Corporation 
2014年9月6日 
NTTデータ基盤システム事業本部 
石井愛弓 
pg_dbms_stats紹介 
PostgreSQLアンカンファレンス2014@東京
2 
Copyright © 2014 NTT DATA Corporation 
目次 
自己紹介 
pg_dbms_statsの紹介 
デモ
3 
Copyright © 2014 NTT DATA Corporation 
自己紹介 
石井愛弓 (いしい あゆみ) 
NTTデータ 基盤システム事業本部(2014年入社) 
•学生時代は、webアプリ開発など 
•現在、PostgreSQL勉強中
Copyright © 2014 NTT DATA Corporation 
4 
pg_dbms_statsの紹介
5 
Copyright © 2014 NTT DATA Corporation 
pg_dbms_statsとは? 
PostgreSQLの統計情報を固定化できる外部モジュール 
開発元 
NTT OSSセンタ 
公開日 
2012年12月 
ライセンス 
BSD 
対応バージョン 
PostgreSQL9.1、9.2、9.3 
公開先 
http://en.sourceforge.jp/projects/pgdbmsstats/ 
pg_dbms_stats
6 
Copyright © 2014 NTT DATA Corporation 
統計 情報 
統計情報とは? 
各テーブルの行数や各カラムのデータ分布などを見積もった情報 
ANALYZEやautovacuumによりDBの最新状況を随時反映 
プラン選択時の入力情報の1つ 
統計情報以外に、設定パラメータ(enable_seqscanなど)やHINT句 (pg_hint_plan利用時)が入力となる 
SQL 
テーブル 
プラン 
ANALYZEやautovacuum 
により統計情報は最新化 
PostgreSQLは、SQL と統計情報を入力に 最適なプランを選択 (出力) 
統計情報の内容から、どのプランを選択するか決まる!
7 
Copyright © 2014 NTT DATA Corporation 
統計情報とプラン選択の課題 
DBの状況変化に伴い、統計情報が変化し、選択されるプランも変化 
突然不適切なプランが選ばれて性能劣化 
性能の安定性を重要視する基幹系システムでは、プランの変化は許容できない 
統計情報の固定化により、選択されるプランも固定化 
商用DBは統計情報を固定化する機能を提供 
PostgreSQLではpg_dbms_statsを利用することで統計情報を固定化できる 
統計 情報 
SQL 
テーブル 
プラン 
ANALYZEや autovacuum 
は固定化された統計情 報を更新できない 
PostgreSQLは、固定 化された統計情報を 入力に最適なプランを 選択
8 
Copyright © 2014 NTT DATA Corporation 
pg_dbms_statsが提供する機能 
機能 
説明 
ロック 
統計情報を固定化する機能 
ロック解除 
統計情報の固定化を解除する機能 
バックアップ 
統計情報をDB内にバックアップする機能 
リストア 
統計情報をバックアップからリストアし、固定化する機能 
パージ 
統計情報のバックアップを削除する機能 
エクスポート 
統計情報を外部ファイルにエクスポートする機能 
インポート 
外部ファイルから統計情報をインポートし、固定化する機能 
商用DBの統計情報固定化機能に似た機能を提供
9 
Copyright © 2014 NTT DATA Corporation 
従来のプラン選択 
統計 
情報 
プラン 
PostgreSQL 
SQL 
統計情報を入力 にプラン選択 
統計情報の内容は ANALYZEにより変 化する
10 
Copyright © 2014 NTT DATA Corporation 
統計情報のロック 
固定 
オリジ ナル 
プラン 
PostgreSQL 
SQL 
マージ 
ANALYZEが更新す るのはオリジナル統 計情報のみ 
オリジナル統計情報のスナップ ショットを固定統計情報とする 
固定統計情報の内容は変化し ない 
オリジナルと固定 のマージ結果を入 力にプラン選択
11 
Copyright © 2014 NTT DATA Corporation 
統計情報のマージ 
固定 
オリジ ナル 
オリジ ナル一 部 
固定 
プラン 
SQL 
PostgreSQL 
固定統計情報を 常に優先 
統計情報が固定化されてい ないテーブルとカラムについ ては、オリジナル統計情報を 使用
12 
Copyright © 2014 NTT DATA Corporation 
統計情報のロック 
固定 
オリジ ナル 
プラン 
PostgreSQL 
SQL 
マージ 
オリジナルと固定のマージ結果の スナップショットを固定統計情報 として保存する
13 
Copyright © 2014 NTT DATA Corporation 
統計情報のロック解除 
オリジ ナル 
プラン 
PostgreSQL 
SQL 
オリジナルのみを 入力にプラン選 択 
固定
Copyright © 2014 NTT DATA Corporation 
14 
デモ
15 
Copyright © 2014 NTT DATA Corporation 
デモの流れ 
○ケース1:統計情報固定化を利用しない 
インデックススキャン 
→データ挿入 
→ビットマップインデックススキャン(不適なプランが選ばれ性能劣化) 
○ケース2:統計情報を固定化する 
インデックススキャン 
→統計情報固定化 
→データ挿入 
→インデックススキャン(性能安定) 
統計情報固定化で性能劣化を防止
Copyright © 2014 NTT DATA Corporation 
16 
最後に
17 
Copyright © 2014 NTT DATA Corporation 
統計情報固定化の問題 
DBAが、真の問題を解決する代わりに、統計情報の固定化に頼 り切ってしまう。この悪い癖を統計情報の固定化は助長する 
固定化した統計情報はデータサイズに対してスケールしない。 テーブルが小さいときに正しかった統計情報は、大きくなったとき に間違ってしまう 
PostgreSQLのプランナの改善を邪魔する。統計情報の固定化の 利用者は、クエリの問題をコミュニティに報告しなくなる 
運用が複雑になる。統計情報の固定化を意識した運用が必要。
18 
Copyright © 2014 NTT DATA Corporation 
まとめ 
統計情報の固定化は使い方次第で 
魔法の杖にも 
トラブルの元凶にもなります。 
効果とリスクを正しく理解し、 
pg_dbms_statsで 
PostgreSQLの一歩進んだ使い方を!
Copyright © 2011 NTT DATA Corporation 
Copyright © 2014 NTT DATA Corporation

More Related Content

What's hot

レプリケーション遅延の監視について(第40回PostgreSQLアンカンファレンス@オンライン 発表資料)
レプリケーション遅延の監視について(第40回PostgreSQLアンカンファレンス@オンライン 発表資料)レプリケーション遅延の監視について(第40回PostgreSQLアンカンファレンス@オンライン 発表資料)
レプリケーション遅延の監視について(第40回PostgreSQLアンカンファレンス@オンライン 発表資料)NTT DATA Technology & Innovation
 
オンライン物理バックアップの排他モードと非排他モードについて ~PostgreSQLバージョン15対応版~(第34回PostgreSQLアンカンファレンス...
オンライン物理バックアップの排他モードと非排他モードについて ~PostgreSQLバージョン15対応版~(第34回PostgreSQLアンカンファレンス...オンライン物理バックアップの排他モードと非排他モードについて ~PostgreSQLバージョン15対応版~(第34回PostgreSQLアンカンファレンス...
オンライン物理バックアップの排他モードと非排他モードについて ~PostgreSQLバージョン15対応版~(第34回PostgreSQLアンカンファレンス...NTT DATA Technology & Innovation
 
PostgreSQLの統計情報について(第26回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQLの統計情報について(第26回PostgreSQLアンカンファレンス@オンライン 発表資料)PostgreSQLの統計情報について(第26回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQLの統計情報について(第26回PostgreSQLアンカンファレンス@オンライン 発表資料)NTT DATA Technology & Innovation
 
PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)NTT DATA Technology & Innovation
 
YugabyteDBの実行計画を眺める(NewSQL/分散SQLデータベースよろず勉強会 #3 発表資料)
YugabyteDBの実行計画を眺める(NewSQL/分散SQLデータベースよろず勉強会 #3 発表資料)YugabyteDBの実行計画を眺める(NewSQL/分散SQLデータベースよろず勉強会 #3 発表資料)
YugabyteDBの実行計画を眺める(NewSQL/分散SQLデータベースよろず勉強会 #3 発表資料)NTT DATA Technology & Innovation
 
まずやっとくPostgreSQLチューニング
まずやっとくPostgreSQLチューニングまずやっとくPostgreSQLチューニング
まずやっとくPostgreSQLチューニングKosuke Kida
 
マネージドPostgreSQLの実現に向けたPostgreSQL機能向上(PostgreSQL Conference Japan 2023 発表資料)
マネージドPostgreSQLの実現に向けたPostgreSQL機能向上(PostgreSQL Conference Japan 2023 発表資料)マネージドPostgreSQLの実現に向けたPostgreSQL機能向上(PostgreSQL Conference Japan 2023 発表資料)
マネージドPostgreSQLの実現に向けたPostgreSQL機能向上(PostgreSQL Conference Japan 2023 発表資料)NTT DATA Technology & Innovation
 
PostgreSQL開発コミュニティに参加しよう!(PostgreSQL Conference Japan 2021 発表資料)
PostgreSQL開発コミュニティに参加しよう!(PostgreSQL Conference Japan 2021 発表資料)PostgreSQL開発コミュニティに参加しよう!(PostgreSQL Conference Japan 2021 発表資料)
PostgreSQL開発コミュニティに参加しよう!(PostgreSQL Conference Japan 2021 発表資料)NTT DATA Technology & Innovation
 
pg_bigmで全文検索するときに気を付けたい5つのポイント(第23回PostgreSQLアンカンファレンス@オンライン 発表資料)
pg_bigmで全文検索するときに気を付けたい5つのポイント(第23回PostgreSQLアンカンファレンス@オンライン 発表資料)pg_bigmで全文検索するときに気を付けたい5つのポイント(第23回PostgreSQLアンカンファレンス@オンライン 発表資料)
pg_bigmで全文検索するときに気を付けたい5つのポイント(第23回PostgreSQLアンカンファレンス@オンライン 発表資料)NTT DATA Technology & Innovation
 
PostgreSQL 15 開発最新情報
PostgreSQL 15 開発最新情報PostgreSQL 15 開発最新情報
PostgreSQL 15 開発最新情報Masahiko Sawada
 
MesonでPostgreSQLをビルドしてみよう!(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)
MesonでPostgreSQLをビルドしてみよう!(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)MesonでPostgreSQLをビルドしてみよう!(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)
MesonでPostgreSQLをビルドしてみよう!(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)NTT DATA Technology & Innovation
 
PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~
PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~
PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~Miki Shimogai
 
統計情報のリセットによるautovacuumへの影響について(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)
統計情報のリセットによるautovacuumへの影響について(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)統計情報のリセットによるautovacuumへの影響について(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)
統計情報のリセットによるautovacuumへの影響について(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)NTT DATA Technology & Innovation
 
今、改めて考えるPostgreSQLプラットフォーム - マルチクラウドとポータビリティ -(PostgreSQL Conference Japan 20...
今、改めて考えるPostgreSQLプラットフォーム - マルチクラウドとポータビリティ -(PostgreSQL Conference Japan 20...今、改めて考えるPostgreSQLプラットフォーム - マルチクラウドとポータビリティ -(PostgreSQL Conference Japan 20...
今、改めて考えるPostgreSQLプラットフォーム - マルチクラウドとポータビリティ -(PostgreSQL Conference Japan 20...NTT DATA Technology & Innovation
 
PostgreSQL初心者がパッチを提案してからコミットされるまで(第20回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQL初心者がパッチを提案してからコミットされるまで(第20回PostgreSQLアンカンファレンス@オンライン 発表資料)PostgreSQL初心者がパッチを提案してからコミットされるまで(第20回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQL初心者がパッチを提案してからコミットされるまで(第20回PostgreSQLアンカンファレンス@オンライン 発表資料)NTT DATA Technology & Innovation
 
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)NTT DATA Technology & Innovation
 
フックを使ったPostgreSQLの拡張機能を作ってみよう!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)
フックを使ったPostgreSQLの拡張機能を作ってみよう!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)フックを使ったPostgreSQLの拡張機能を作ってみよう!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)
フックを使ったPostgreSQLの拡張機能を作ってみよう!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)NTT DATA Technology & Innovation
 
PostgreSQLのバグとの付き合い方 ~バグの調査からコミュニティへの報告、修正パッチ投稿まで~(PostgreSQL Conference Japa...
PostgreSQLのバグとの付き合い方 ~バグの調査からコミュニティへの報告、修正パッチ投稿まで~(PostgreSQL Conference Japa...PostgreSQLのバグとの付き合い方 ~バグの調査からコミュニティへの報告、修正パッチ投稿まで~(PostgreSQL Conference Japa...
PostgreSQLのバグとの付き合い方 ~バグの調査からコミュニティへの報告、修正パッチ投稿まで~(PostgreSQL Conference Japa...NTT DATA Technology & Innovation
 
PGCon 2023 参加報告(第42回PostgreSQLアンカンファレンス@オンライン 発表資料)
PGCon 2023 参加報告(第42回PostgreSQLアンカンファレンス@オンライン 発表資料)PGCon 2023 参加報告(第42回PostgreSQLアンカンファレンス@オンライン 発表資料)
PGCon 2023 参加報告(第42回PostgreSQLアンカンファレンス@オンライン 発表資料)NTT DATA Technology & Innovation
 

What's hot (20)

レプリケーション遅延の監視について(第40回PostgreSQLアンカンファレンス@オンライン 発表資料)
レプリケーション遅延の監視について(第40回PostgreSQLアンカンファレンス@オンライン 発表資料)レプリケーション遅延の監視について(第40回PostgreSQLアンカンファレンス@オンライン 発表資料)
レプリケーション遅延の監視について(第40回PostgreSQLアンカンファレンス@オンライン 発表資料)
 
オンライン物理バックアップの排他モードと非排他モードについて ~PostgreSQLバージョン15対応版~(第34回PostgreSQLアンカンファレンス...
オンライン物理バックアップの排他モードと非排他モードについて ~PostgreSQLバージョン15対応版~(第34回PostgreSQLアンカンファレンス...オンライン物理バックアップの排他モードと非排他モードについて ~PostgreSQLバージョン15対応版~(第34回PostgreSQLアンカンファレンス...
オンライン物理バックアップの排他モードと非排他モードについて ~PostgreSQLバージョン15対応版~(第34回PostgreSQLアンカンファレンス...
 
PostgreSQLの統計情報について(第26回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQLの統計情報について(第26回PostgreSQLアンカンファレンス@オンライン 発表資料)PostgreSQLの統計情報について(第26回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQLの統計情報について(第26回PostgreSQLアンカンファレンス@オンライン 発表資料)
 
PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQLのfull_page_writesについて(第24回PostgreSQLアンカンファレンス@オンライン 発表資料)
 
YugabyteDBの実行計画を眺める(NewSQL/分散SQLデータベースよろず勉強会 #3 発表資料)
YugabyteDBの実行計画を眺める(NewSQL/分散SQLデータベースよろず勉強会 #3 発表資料)YugabyteDBの実行計画を眺める(NewSQL/分散SQLデータベースよろず勉強会 #3 発表資料)
YugabyteDBの実行計画を眺める(NewSQL/分散SQLデータベースよろず勉強会 #3 発表資料)
 
まずやっとくPostgreSQLチューニング
まずやっとくPostgreSQLチューニングまずやっとくPostgreSQLチューニング
まずやっとくPostgreSQLチューニング
 
マネージドPostgreSQLの実現に向けたPostgreSQL機能向上(PostgreSQL Conference Japan 2023 発表資料)
マネージドPostgreSQLの実現に向けたPostgreSQL機能向上(PostgreSQL Conference Japan 2023 発表資料)マネージドPostgreSQLの実現に向けたPostgreSQL機能向上(PostgreSQL Conference Japan 2023 発表資料)
マネージドPostgreSQLの実現に向けたPostgreSQL機能向上(PostgreSQL Conference Japan 2023 発表資料)
 
PostgreSQL開発コミュニティに参加しよう!(PostgreSQL Conference Japan 2021 発表資料)
PostgreSQL開発コミュニティに参加しよう!(PostgreSQL Conference Japan 2021 発表資料)PostgreSQL開発コミュニティに参加しよう!(PostgreSQL Conference Japan 2021 発表資料)
PostgreSQL開発コミュニティに参加しよう!(PostgreSQL Conference Japan 2021 発表資料)
 
pg_bigmで全文検索するときに気を付けたい5つのポイント(第23回PostgreSQLアンカンファレンス@オンライン 発表資料)
pg_bigmで全文検索するときに気を付けたい5つのポイント(第23回PostgreSQLアンカンファレンス@オンライン 発表資料)pg_bigmで全文検索するときに気を付けたい5つのポイント(第23回PostgreSQLアンカンファレンス@オンライン 発表資料)
pg_bigmで全文検索するときに気を付けたい5つのポイント(第23回PostgreSQLアンカンファレンス@オンライン 発表資料)
 
PostgreSQL 15 開発最新情報
PostgreSQL 15 開発最新情報PostgreSQL 15 開発最新情報
PostgreSQL 15 開発最新情報
 
MesonでPostgreSQLをビルドしてみよう!(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)
MesonでPostgreSQLをビルドしてみよう!(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)MesonでPostgreSQLをビルドしてみよう!(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)
MesonでPostgreSQLをビルドしてみよう!(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)
 
PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~
PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~
PostgreSQLクエリ実行の基礎知識 ~Explainを読み解こう~
 
統計情報のリセットによるautovacuumへの影響について(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)
統計情報のリセットによるautovacuumへの影響について(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)統計情報のリセットによるautovacuumへの影響について(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)
統計情報のリセットによるautovacuumへの影響について(第39回PostgreSQLアンカンファレンス@オンライン 発表資料)
 
今、改めて考えるPostgreSQLプラットフォーム - マルチクラウドとポータビリティ -(PostgreSQL Conference Japan 20...
今、改めて考えるPostgreSQLプラットフォーム - マルチクラウドとポータビリティ -(PostgreSQL Conference Japan 20...今、改めて考えるPostgreSQLプラットフォーム - マルチクラウドとポータビリティ -(PostgreSQL Conference Japan 20...
今、改めて考えるPostgreSQLプラットフォーム - マルチクラウドとポータビリティ -(PostgreSQL Conference Japan 20...
 
PostgreSQL初心者がパッチを提案してからコミットされるまで(第20回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQL初心者がパッチを提案してからコミットされるまで(第20回PostgreSQLアンカンファレンス@オンライン 発表資料)PostgreSQL初心者がパッチを提案してからコミットされるまで(第20回PostgreSQLアンカンファレンス@オンライン 発表資料)
PostgreSQL初心者がパッチを提案してからコミットされるまで(第20回PostgreSQLアンカンファレンス@オンライン 発表資料)
 
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
 
フックを使ったPostgreSQLの拡張機能を作ってみよう!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)
フックを使ったPostgreSQLの拡張機能を作ってみよう!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)フックを使ったPostgreSQLの拡張機能を作ってみよう!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)
フックを使ったPostgreSQLの拡張機能を作ってみよう!(第33回PostgreSQLアンカンファレンス@オンライン 発表資料)
 
PostgreSQLのバグとの付き合い方 ~バグの調査からコミュニティへの報告、修正パッチ投稿まで~(PostgreSQL Conference Japa...
PostgreSQLのバグとの付き合い方 ~バグの調査からコミュニティへの報告、修正パッチ投稿まで~(PostgreSQL Conference Japa...PostgreSQLのバグとの付き合い方 ~バグの調査からコミュニティへの報告、修正パッチ投稿まで~(PostgreSQL Conference Japa...
PostgreSQLのバグとの付き合い方 ~バグの調査からコミュニティへの報告、修正パッチ投稿まで~(PostgreSQL Conference Japa...
 
PGCon 2023 参加報告(第42回PostgreSQLアンカンファレンス@オンライン 発表資料)
PGCon 2023 参加報告(第42回PostgreSQLアンカンファレンス@オンライン 発表資料)PGCon 2023 参加報告(第42回PostgreSQLアンカンファレンス@オンライン 発表資料)
PGCon 2023 参加報告(第42回PostgreSQLアンカンファレンス@オンライン 発表資料)
 
NTT DATA と PostgreSQL が挑んだ総力戦
NTT DATA と PostgreSQL が挑んだ総力戦NTT DATA と PostgreSQL が挑んだ総力戦
NTT DATA と PostgreSQL が挑んだ総力戦
 

Viewers also liked

PostgreSQLレプリケーション徹底紹介
PostgreSQLレプリケーション徹底紹介PostgreSQLレプリケーション徹底紹介
PostgreSQLレプリケーション徹底紹介Masao Fujii
 
使ってみませんか?pg hint_plan
使ってみませんか?pg hint_plan使ってみませんか?pg hint_plan
使ってみませんか?pg hint_planMasao Fujii
 
Using the PostgreSQL Extension Ecosystem for Advanced Analytics
Using the PostgreSQL Extension Ecosystem for Advanced AnalyticsUsing the PostgreSQL Extension Ecosystem for Advanced Analytics
Using the PostgreSQL Extension Ecosystem for Advanced AnalyticsChartio
 

Viewers also liked (20)

pg_bigmを用いた全文検索のしくみ(後編)
pg_bigmを用いた全文検索のしくみ(後編)pg_bigmを用いた全文検索のしくみ(後編)
pg_bigmを用いた全文検索のしくみ(後編)
 
perfを使ったPostgreSQLの解析(前編)
perfを使ったPostgreSQLの解析(前編)perfを使ったPostgreSQLの解析(前編)
perfを使ったPostgreSQLの解析(前編)
 
GresCubeで快適PostgreSQLライフ
GresCubeで快適PostgreSQLライフGresCubeで快適PostgreSQLライフ
GresCubeで快適PostgreSQLライフ
 
PostgreSQL replication
PostgreSQL replicationPostgreSQL replication
PostgreSQL replication
 
10大ニュースで振り返るpg con2013
10大ニュースで振り返るpg con201310大ニュースで振り返るpg con2013
10大ニュースで振り返るpg con2013
 
10大ニュースで振り返るPGCon2015
10大ニュースで振り返るPGCon201510大ニュースで振り返るPGCon2015
10大ニュースで振り返るPGCon2015
 
perfを使ったPostgreSQLの解析(後編)
perfを使ったPostgreSQLの解析(後編)perfを使ったPostgreSQLの解析(後編)
perfを使ったPostgreSQLの解析(後編)
 
pg_trgmと全文検索
pg_trgmと全文検索pg_trgmと全文検索
pg_trgmと全文検索
 
pg_bigmを用いた全文検索のしくみ(前編)
pg_bigmを用いた全文検索のしくみ(前編)pg_bigmを用いた全文検索のしくみ(前編)
pg_bigmを用いた全文検索のしくみ(前編)
 
PostreSQL監査
PostreSQL監査PostreSQL監査
PostreSQL監査
 
使ってみませんか?pg_hint_plan
使ってみませんか?pg_hint_plan使ってみませんか?pg_hint_plan
使ってみませんか?pg_hint_plan
 
PostgreSQL9.3新機能紹介
PostgreSQL9.3新機能紹介PostgreSQL9.3新機能紹介
PostgreSQL9.3新機能紹介
 
JSONBはPostgreSQL9.5でいかに改善されたのか
JSONBはPostgreSQL9.5でいかに改善されたのかJSONBはPostgreSQL9.5でいかに改善されたのか
JSONBはPostgreSQL9.5でいかに改善されたのか
 
PostgreSQLコミュニティに飛び込もう
PostgreSQLコミュニティに飛び込もうPostgreSQLコミュニティに飛び込もう
PostgreSQLコミュニティに飛び込もう
 
PostgreSQLレプリケーション徹底紹介
PostgreSQLレプリケーション徹底紹介PostgreSQLレプリケーション徹底紹介
PostgreSQLレプリケーション徹底紹介
 
PostgreSQL 9.5 新機能紹介
PostgreSQL 9.5 新機能紹介PostgreSQL 9.5 新機能紹介
PostgreSQL 9.5 新機能紹介
 
PostgreSQLの運用・監視にまつわるエトセトラ
PostgreSQLの運用・監視にまつわるエトセトラPostgreSQLの運用・監視にまつわるエトセトラ
PostgreSQLの運用・監視にまつわるエトセトラ
 
PostgreSQLレプリケーション徹底紹介
PostgreSQLレプリケーション徹底紹介PostgreSQLレプリケーション徹底紹介
PostgreSQLレプリケーション徹底紹介
 
使ってみませんか?pg hint_plan
使ってみませんか?pg hint_plan使ってみませんか?pg hint_plan
使ってみませんか?pg hint_plan
 
Using the PostgreSQL Extension Ecosystem for Advanced Analytics
Using the PostgreSQL Extension Ecosystem for Advanced AnalyticsUsing the PostgreSQL Extension Ecosystem for Advanced Analytics
Using the PostgreSQL Extension Ecosystem for Advanced Analytics
 

Similar to pg_dbms_statsの紹介

PostgreSQL 14 モニタリング新機能紹介(PostgreSQL カンファレンス #24、2021/06/08)
PostgreSQL 14 モニタリング新機能紹介(PostgreSQL カンファレンス #24、2021/06/08)PostgreSQL 14 モニタリング新機能紹介(PostgreSQL カンファレンス #24、2021/06/08)
PostgreSQL 14 モニタリング新機能紹介(PostgreSQL カンファレンス #24、2021/06/08)NTT DATA Technology & Innovation
 
世界征服を目指す Jubatus だからこそ期待する 5 つのポイント
世界征服を目指す Jubatus だからこそ期待する 5 つのポイント世界征服を目指す Jubatus だからこそ期待する 5 つのポイント
世界征服を目指す Jubatus だからこそ期待する 5 つのポイントToru Shimogaki
 
PostgreSQLによるデータ分析ことはじめ
PostgreSQLによるデータ分析ことはじめPostgreSQLによるデータ分析ことはじめ
PostgreSQLによるデータ分析ことはじめOhyama Masanori
 
PostgreSQL13でのレプリケーション関連の改善について(第14回PostgreSQLアンカンファレンス@オンライン)
PostgreSQL13でのレプリケーション関連の改善について(第14回PostgreSQLアンカンファレンス@オンライン)PostgreSQL13でのレプリケーション関連の改善について(第14回PostgreSQLアンカンファレンス@オンライン)
PostgreSQL13でのレプリケーション関連の改善について(第14回PostgreSQLアンカンファレンス@オンライン)NTT DATA Technology & Innovation
 
レガシーコードを改善した先にあるもの、それは継続的インテグレーション
レガシーコードを改善した先にあるもの、それは継続的インテグレーションレガシーコードを改善した先にあるもの、それは継続的インテグレーション
レガシーコードを改善した先にあるもの、それは継続的インテグレーションMasanori Satoh
 
pg_standbyの今後について(第19回PostgreSQLアンカンファレンス@オンライン 発表資料)
pg_standbyの今後について(第19回PostgreSQLアンカンファレンス@オンライン 発表資料)pg_standbyの今後について(第19回PostgreSQLアンカンファレンス@オンライン 発表資料)
pg_standbyの今後について(第19回PostgreSQLアンカンファレンス@オンライン 発表資料)NTT DATA Technology & Innovation
 
Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)
Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)
Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)NTT DATA OSS Professional Services
 
PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)
PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)
PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)NTT DATA OSS Professional Services
 
SQL on Hadoop 比較検証 【2014月11日における検証レポート】
SQL on Hadoop 比較検証 【2014月11日における検証レポート】SQL on Hadoop 比較検証 【2014月11日における検証レポート】
SQL on Hadoop 比較検証 【2014月11日における検証レポート】NTT DATA OSS Professional Services
 
[D24] あなたのビジネスを変えるInfiniDBケーススタディ by Toshihide Hanatani
[D24] あなたのビジネスを変えるInfiniDBケーススタディ by Toshihide Hanatani[D24] あなたのビジネスを変えるInfiniDBケーススタディ by Toshihide Hanatani
[D24] あなたのビジネスを変えるInfiniDBケーススタディ by Toshihide HanataniInsight Technology, Inc.
 
[db tech showcase Tokyo 2015] C25:HP NonStop SQLはなぜグローバルに分散DBを構築できるのか、 データの整合...
[db tech showcase Tokyo 2015] C25:HP NonStop SQLはなぜグローバルに分散DBを構築できるのか、 データの整合...[db tech showcase Tokyo 2015] C25:HP NonStop SQLはなぜグローバルに分散DBを構築できるのか、 データの整合...
[db tech showcase Tokyo 2015] C25:HP NonStop SQLはなぜグローバルに分散DBを構築できるのか、 データの整合...Insight Technology, Inc.
 
Pentaho+mongo db勉強会20150416
Pentaho+mongo db勉強会20150416Pentaho+mongo db勉強会20150416
Pentaho+mongo db勉強会20150416Yoshiteru Morimoto
 
Ansibleで構成管理始める人のモチベーションをあげたい! (Cloudera World Tokyo 2014LT講演資料)
Ansibleで構成管理始める人のモチベーションをあげたい! (Cloudera World Tokyo 2014LT講演資料)Ansibleで構成管理始める人のモチベーションをあげたい! (Cloudera World Tokyo 2014LT講演資料)
Ansibleで構成管理始める人のモチベーションをあげたい! (Cloudera World Tokyo 2014LT講演資料)NTT DATA OSS Professional Services
 
Sparkをノートブックにまとめちゃおう。Zeppelinでね!(Hadoopソースコードリーディング 第19回 発表資料)
Sparkをノートブックにまとめちゃおう。Zeppelinでね!(Hadoopソースコードリーディング 第19回 発表資料)Sparkをノートブックにまとめちゃおう。Zeppelinでね!(Hadoopソースコードリーディング 第19回 発表資料)
Sparkをノートブックにまとめちゃおう。Zeppelinでね!(Hadoopソースコードリーディング 第19回 発表資料)NTT DATA OSS Professional Services
 
perfを使ったPostgreSQLの解析(前編)
perfを使ったPostgreSQLの解析(前編)perfを使ったPostgreSQLの解析(前編)
perfを使ったPostgreSQLの解析(前編)Daichi Egawa
 
perfを使ったpostgre sqlの解析(後編)
perfを使ったpostgre sqlの解析(後編)perfを使ったpostgre sqlの解析(後編)
perfを使ったpostgre sqlの解析(後編)Daichi Egawa
 
C27 基幹領域への適用におけるpostgre sqlの抱える課題 by 原嘉彦
C27 基幹領域への適用におけるpostgre sqlの抱える課題 by 原嘉彦C27 基幹領域への適用におけるpostgre sqlの抱える課題 by 原嘉彦
C27 基幹領域への適用におけるpostgre sqlの抱える課題 by 原嘉彦Insight Technology, Inc.
 
[db tech showcase Tokyo 2015] D16:マイケルストーンブレーカー発の超高速データベースで実現する分析基盤の簡単構築・運用ステ...
[db tech showcase Tokyo 2015] D16:マイケルストーンブレーカー発の超高速データベースで実現する分析基盤の簡単構築・運用ステ...[db tech showcase Tokyo 2015] D16:マイケルストーンブレーカー発の超高速データベースで実現する分析基盤の簡単構築・運用ステ...
[db tech showcase Tokyo 2015] D16:マイケルストーンブレーカー発の超高速データベースで実現する分析基盤の簡単構築・運用ステ...Insight Technology, Inc.
 
株式会社サイバーエージェント アドテクスタジオの技術と開発
株式会社サイバーエージェント アドテクスタジオの技術と開発株式会社サイバーエージェント アドテクスタジオの技術と開発
株式会社サイバーエージェント アドテクスタジオの技術と開発Naoyuki Yamada
 

Similar to pg_dbms_statsの紹介 (20)

PostgreSQL 14 モニタリング新機能紹介(PostgreSQL カンファレンス #24、2021/06/08)
PostgreSQL 14 モニタリング新機能紹介(PostgreSQL カンファレンス #24、2021/06/08)PostgreSQL 14 モニタリング新機能紹介(PostgreSQL カンファレンス #24、2021/06/08)
PostgreSQL 14 モニタリング新機能紹介(PostgreSQL カンファレンス #24、2021/06/08)
 
世界征服を目指す Jubatus だからこそ期待する 5 つのポイント
世界征服を目指す Jubatus だからこそ期待する 5 つのポイント世界征服を目指す Jubatus だからこそ期待する 5 つのポイント
世界征服を目指す Jubatus だからこそ期待する 5 つのポイント
 
PostgreSQLによるデータ分析ことはじめ
PostgreSQLによるデータ分析ことはじめPostgreSQLによるデータ分析ことはじめ
PostgreSQLによるデータ分析ことはじめ
 
PostgreSQL13でのレプリケーション関連の改善について(第14回PostgreSQLアンカンファレンス@オンライン)
PostgreSQL13でのレプリケーション関連の改善について(第14回PostgreSQLアンカンファレンス@オンライン)PostgreSQL13でのレプリケーション関連の改善について(第14回PostgreSQLアンカンファレンス@オンライン)
PostgreSQL13でのレプリケーション関連の改善について(第14回PostgreSQLアンカンファレンス@オンライン)
 
レガシーコードを改善した先にあるもの、それは継続的インテグレーション
レガシーコードを改善した先にあるもの、それは継続的インテグレーションレガシーコードを改善した先にあるもの、それは継続的インテグレーション
レガシーコードを改善した先にあるもの、それは継続的インテグレーション
 
pg_standbyの今後について(第19回PostgreSQLアンカンファレンス@オンライン 発表資料)
pg_standbyの今後について(第19回PostgreSQLアンカンファレンス@オンライン 発表資料)pg_standbyの今後について(第19回PostgreSQLアンカンファレンス@オンライン 発表資料)
pg_standbyの今後について(第19回PostgreSQLアンカンファレンス@オンライン 発表資料)
 
Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)
Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)
Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)
 
July techfesta2014 f30
July techfesta2014 f30July techfesta2014 f30
July techfesta2014 f30
 
PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)
PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)
PostgreSQLでpg_bigmを使って日本語全文検索 (MySQLとPostgreSQLの日本語全文検索勉強会 発表資料)
 
SQL on Hadoop 比較検証 【2014月11日における検証レポート】
SQL on Hadoop 比較検証 【2014月11日における検証レポート】SQL on Hadoop 比較検証 【2014月11日における検証レポート】
SQL on Hadoop 比較検証 【2014月11日における検証レポート】
 
[D24] あなたのビジネスを変えるInfiniDBケーススタディ by Toshihide Hanatani
[D24] あなたのビジネスを変えるInfiniDBケーススタディ by Toshihide Hanatani[D24] あなたのビジネスを変えるInfiniDBケーススタディ by Toshihide Hanatani
[D24] あなたのビジネスを変えるInfiniDBケーススタディ by Toshihide Hanatani
 
[db tech showcase Tokyo 2015] C25:HP NonStop SQLはなぜグローバルに分散DBを構築できるのか、 データの整合...
[db tech showcase Tokyo 2015] C25:HP NonStop SQLはなぜグローバルに分散DBを構築できるのか、 データの整合...[db tech showcase Tokyo 2015] C25:HP NonStop SQLはなぜグローバルに分散DBを構築できるのか、 データの整合...
[db tech showcase Tokyo 2015] C25:HP NonStop SQLはなぜグローバルに分散DBを構築できるのか、 データの整合...
 
Pentaho+mongo db勉強会20150416
Pentaho+mongo db勉強会20150416Pentaho+mongo db勉強会20150416
Pentaho+mongo db勉強会20150416
 
Ansibleで構成管理始める人のモチベーションをあげたい! (Cloudera World Tokyo 2014LT講演資料)
Ansibleで構成管理始める人のモチベーションをあげたい! (Cloudera World Tokyo 2014LT講演資料)Ansibleで構成管理始める人のモチベーションをあげたい! (Cloudera World Tokyo 2014LT講演資料)
Ansibleで構成管理始める人のモチベーションをあげたい! (Cloudera World Tokyo 2014LT講演資料)
 
Sparkをノートブックにまとめちゃおう。Zeppelinでね!(Hadoopソースコードリーディング 第19回 発表資料)
Sparkをノートブックにまとめちゃおう。Zeppelinでね!(Hadoopソースコードリーディング 第19回 発表資料)Sparkをノートブックにまとめちゃおう。Zeppelinでね!(Hadoopソースコードリーディング 第19回 発表資料)
Sparkをノートブックにまとめちゃおう。Zeppelinでね!(Hadoopソースコードリーディング 第19回 発表資料)
 
perfを使ったPostgreSQLの解析(前編)
perfを使ったPostgreSQLの解析(前編)perfを使ったPostgreSQLの解析(前編)
perfを使ったPostgreSQLの解析(前編)
 
perfを使ったpostgre sqlの解析(後編)
perfを使ったpostgre sqlの解析(後編)perfを使ったpostgre sqlの解析(後編)
perfを使ったpostgre sqlの解析(後編)
 
C27 基幹領域への適用におけるpostgre sqlの抱える課題 by 原嘉彦
C27 基幹領域への適用におけるpostgre sqlの抱える課題 by 原嘉彦C27 基幹領域への適用におけるpostgre sqlの抱える課題 by 原嘉彦
C27 基幹領域への適用におけるpostgre sqlの抱える課題 by 原嘉彦
 
[db tech showcase Tokyo 2015] D16:マイケルストーンブレーカー発の超高速データベースで実現する分析基盤の簡単構築・運用ステ...
[db tech showcase Tokyo 2015] D16:マイケルストーンブレーカー発の超高速データベースで実現する分析基盤の簡単構築・運用ステ...[db tech showcase Tokyo 2015] D16:マイケルストーンブレーカー発の超高速データベースで実現する分析基盤の簡単構築・運用ステ...
[db tech showcase Tokyo 2015] D16:マイケルストーンブレーカー発の超高速データベースで実現する分析基盤の簡単構築・運用ステ...
 
株式会社サイバーエージェント アドテクスタジオの技術と開発
株式会社サイバーエージェント アドテクスタジオの技術と開発株式会社サイバーエージェント アドテクスタジオの技術と開発
株式会社サイバーエージェント アドテクスタジオの技術と開発
 

More from NTT DATA OSS Professional Services

Global Top 5 を目指す NTT DATA の確かで意外な技術力
Global Top 5 を目指す NTT DATA の確かで意外な技術力Global Top 5 を目指す NTT DATA の確かで意外な技術力
Global Top 5 を目指す NTT DATA の確かで意外な技術力NTT DATA OSS Professional Services
 
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~NTT DATA OSS Professional Services
 
PostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイント
PostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイントPostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイント
PostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイントNTT DATA OSS Professional Services
 
SIerとオープンソースの美味しい関係 ~コミュニティの力を活かして世界を目指そう~
SIerとオープンソースの美味しい関係 ~コミュニティの力を活かして世界を目指そう~SIerとオープンソースの美味しい関係 ~コミュニティの力を活かして世界を目指そう~
SIerとオープンソースの美味しい関係 ~コミュニティの力を活かして世界を目指そう~NTT DATA OSS Professional Services
 
データ活用をもっともっと円滑に! ~データ処理・分析基盤編を少しだけ~
データ活用をもっともっと円滑に!~データ処理・分析基盤編を少しだけ~データ活用をもっともっと円滑に!~データ処理・分析基盤編を少しだけ~
データ活用をもっともっと円滑に! ~データ処理・分析基盤編を少しだけ~NTT DATA OSS Professional Services
 
商用ミドルウェアのPuppet化で気を付けたい5つのこと
商用ミドルウェアのPuppet化で気を付けたい5つのこと商用ミドルウェアのPuppet化で気を付けたい5つのこと
商用ミドルウェアのPuppet化で気を付けたい5つのことNTT DATA OSS Professional Services
 

More from NTT DATA OSS Professional Services (20)

Global Top 5 を目指す NTT DATA の確かで意外な技術力
Global Top 5 を目指す NTT DATA の確かで意外な技術力Global Top 5 を目指す NTT DATA の確かで意外な技術力
Global Top 5 を目指す NTT DATA の確かで意外な技術力
 
Spark SQL - The internal -
Spark SQL - The internal -Spark SQL - The internal -
Spark SQL - The internal -
 
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
 
Hadoopエコシステムのデータストア振り返り
Hadoopエコシステムのデータストア振り返りHadoopエコシステムのデータストア振り返り
Hadoopエコシステムのデータストア振り返り
 
HDFS Router-based federation
HDFS Router-based federationHDFS Router-based federation
HDFS Router-based federation
 
PostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイント
PostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイントPostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイント
PostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイント
 
Apache Hadoopの新機能Ozoneの現状
Apache Hadoopの新機能Ozoneの現状Apache Hadoopの新機能Ozoneの現状
Apache Hadoopの新機能Ozoneの現状
 
Distributed data stores in Hadoop ecosystem
Distributed data stores in Hadoop ecosystemDistributed data stores in Hadoop ecosystem
Distributed data stores in Hadoop ecosystem
 
Structured Streaming - The Internal -
Structured Streaming - The Internal -Structured Streaming - The Internal -
Structured Streaming - The Internal -
 
Apache Hadoopの未来 3系になって何が変わるのか?
Apache Hadoopの未来 3系になって何が変わるのか?Apache Hadoopの未来 3系になって何が変わるのか?
Apache Hadoopの未来 3系になって何が変わるのか?
 
Apache Hadoop and YARN, current development status
Apache Hadoop and YARN, current development statusApache Hadoop and YARN, current development status
Apache Hadoop and YARN, current development status
 
HDFS basics from API perspective
HDFS basics from API perspectiveHDFS basics from API perspective
HDFS basics from API perspective
 
SIerとオープンソースの美味しい関係 ~コミュニティの力を活かして世界を目指そう~
SIerとオープンソースの美味しい関係 ~コミュニティの力を活かして世界を目指そう~SIerとオープンソースの美味しい関係 ~コミュニティの力を活かして世界を目指そう~
SIerとオープンソースの美味しい関係 ~コミュニティの力を活かして世界を目指そう~
 
20170303 java9 hadoop
20170303 java9 hadoop20170303 java9 hadoop
20170303 java9 hadoop
 
ブロックチェーンの仕組みと動向(入門編)
ブロックチェーンの仕組みと動向(入門編)ブロックチェーンの仕組みと動向(入門編)
ブロックチェーンの仕組みと動向(入門編)
 
Application of postgre sql to large social infrastructure jp
Application of postgre sql to large social infrastructure jpApplication of postgre sql to large social infrastructure jp
Application of postgre sql to large social infrastructure jp
 
Application of postgre sql to large social infrastructure
Application of postgre sql to large social infrastructureApplication of postgre sql to large social infrastructure
Application of postgre sql to large social infrastructure
 
Apache Hadoop 2.8.0 の新機能 (抜粋)
Apache Hadoop 2.8.0 の新機能 (抜粋)Apache Hadoop 2.8.0 の新機能 (抜粋)
Apache Hadoop 2.8.0 の新機能 (抜粋)
 
データ活用をもっともっと円滑に! ~データ処理・分析基盤編を少しだけ~
データ活用をもっともっと円滑に!~データ処理・分析基盤編を少しだけ~データ活用をもっともっと円滑に!~データ処理・分析基盤編を少しだけ~
データ活用をもっともっと円滑に! ~データ処理・分析基盤編を少しだけ~
 
商用ミドルウェアのPuppet化で気を付けたい5つのこと
商用ミドルウェアのPuppet化で気を付けたい5つのこと商用ミドルウェアのPuppet化で気を付けたい5つのこと
商用ミドルウェアのPuppet化で気を付けたい5つのこと
 

pg_dbms_statsの紹介

  • 1. Copyright © 2014 NTT DATA Corporation 2014年9月6日 NTTデータ基盤システム事業本部 石井愛弓 pg_dbms_stats紹介 PostgreSQLアンカンファレンス2014@東京
  • 2. 2 Copyright © 2014 NTT DATA Corporation 目次 自己紹介 pg_dbms_statsの紹介 デモ
  • 3. 3 Copyright © 2014 NTT DATA Corporation 自己紹介 石井愛弓 (いしい あゆみ) NTTデータ 基盤システム事業本部(2014年入社) •学生時代は、webアプリ開発など •現在、PostgreSQL勉強中
  • 4. Copyright © 2014 NTT DATA Corporation 4 pg_dbms_statsの紹介
  • 5. 5 Copyright © 2014 NTT DATA Corporation pg_dbms_statsとは? PostgreSQLの統計情報を固定化できる外部モジュール 開発元 NTT OSSセンタ 公開日 2012年12月 ライセンス BSD 対応バージョン PostgreSQL9.1、9.2、9.3 公開先 http://en.sourceforge.jp/projects/pgdbmsstats/ pg_dbms_stats
  • 6. 6 Copyright © 2014 NTT DATA Corporation 統計 情報 統計情報とは? 各テーブルの行数や各カラムのデータ分布などを見積もった情報 ANALYZEやautovacuumによりDBの最新状況を随時反映 プラン選択時の入力情報の1つ 統計情報以外に、設定パラメータ(enable_seqscanなど)やHINT句 (pg_hint_plan利用時)が入力となる SQL テーブル プラン ANALYZEやautovacuum により統計情報は最新化 PostgreSQLは、SQL と統計情報を入力に 最適なプランを選択 (出力) 統計情報の内容から、どのプランを選択するか決まる!
  • 7. 7 Copyright © 2014 NTT DATA Corporation 統計情報とプラン選択の課題 DBの状況変化に伴い、統計情報が変化し、選択されるプランも変化 突然不適切なプランが選ばれて性能劣化 性能の安定性を重要視する基幹系システムでは、プランの変化は許容できない 統計情報の固定化により、選択されるプランも固定化 商用DBは統計情報を固定化する機能を提供 PostgreSQLではpg_dbms_statsを利用することで統計情報を固定化できる 統計 情報 SQL テーブル プラン ANALYZEや autovacuum は固定化された統計情 報を更新できない PostgreSQLは、固定 化された統計情報を 入力に最適なプランを 選択
  • 8. 8 Copyright © 2014 NTT DATA Corporation pg_dbms_statsが提供する機能 機能 説明 ロック 統計情報を固定化する機能 ロック解除 統計情報の固定化を解除する機能 バックアップ 統計情報をDB内にバックアップする機能 リストア 統計情報をバックアップからリストアし、固定化する機能 パージ 統計情報のバックアップを削除する機能 エクスポート 統計情報を外部ファイルにエクスポートする機能 インポート 外部ファイルから統計情報をインポートし、固定化する機能 商用DBの統計情報固定化機能に似た機能を提供
  • 9. 9 Copyright © 2014 NTT DATA Corporation 従来のプラン選択 統計 情報 プラン PostgreSQL SQL 統計情報を入力 にプラン選択 統計情報の内容は ANALYZEにより変 化する
  • 10. 10 Copyright © 2014 NTT DATA Corporation 統計情報のロック 固定 オリジ ナル プラン PostgreSQL SQL マージ ANALYZEが更新す るのはオリジナル統 計情報のみ オリジナル統計情報のスナップ ショットを固定統計情報とする 固定統計情報の内容は変化し ない オリジナルと固定 のマージ結果を入 力にプラン選択
  • 11. 11 Copyright © 2014 NTT DATA Corporation 統計情報のマージ 固定 オリジ ナル オリジ ナル一 部 固定 プラン SQL PostgreSQL 固定統計情報を 常に優先 統計情報が固定化されてい ないテーブルとカラムについ ては、オリジナル統計情報を 使用
  • 12. 12 Copyright © 2014 NTT DATA Corporation 統計情報のロック 固定 オリジ ナル プラン PostgreSQL SQL マージ オリジナルと固定のマージ結果の スナップショットを固定統計情報 として保存する
  • 13. 13 Copyright © 2014 NTT DATA Corporation 統計情報のロック解除 オリジ ナル プラン PostgreSQL SQL オリジナルのみを 入力にプラン選 択 固定
  • 14. Copyright © 2014 NTT DATA Corporation 14 デモ
  • 15. 15 Copyright © 2014 NTT DATA Corporation デモの流れ ○ケース1:統計情報固定化を利用しない インデックススキャン →データ挿入 →ビットマップインデックススキャン(不適なプランが選ばれ性能劣化) ○ケース2:統計情報を固定化する インデックススキャン →統計情報固定化 →データ挿入 →インデックススキャン(性能安定) 統計情報固定化で性能劣化を防止
  • 16. Copyright © 2014 NTT DATA Corporation 16 最後に
  • 17. 17 Copyright © 2014 NTT DATA Corporation 統計情報固定化の問題 DBAが、真の問題を解決する代わりに、統計情報の固定化に頼 り切ってしまう。この悪い癖を統計情報の固定化は助長する 固定化した統計情報はデータサイズに対してスケールしない。 テーブルが小さいときに正しかった統計情報は、大きくなったとき に間違ってしまう PostgreSQLのプランナの改善を邪魔する。統計情報の固定化の 利用者は、クエリの問題をコミュニティに報告しなくなる 運用が複雑になる。統計情報の固定化を意識した運用が必要。
  • 18. 18 Copyright © 2014 NTT DATA Corporation まとめ 統計情報の固定化は使い方次第で 魔法の杖にも トラブルの元凶にもなります。 効果とリスクを正しく理解し、 pg_dbms_statsで PostgreSQLの一歩進んだ使い方を!
  • 19. Copyright © 2011 NTT DATA Corporation Copyright © 2014 NTT DATA Corporation