SlideShare a Scribd company logo
1 of 11
Download to read offline
Hadoop / Spark
Conference Japan 2016
ご挨拶・Hadoopを取り巻く環境
日本Hadoopユーザー会
濱野 賢一朗/Kenichiro Hamano (NTTデータ)
今回は
Spark Conference
Japan 2016
初開催!(併催)
今年は
Hadoop
10周年!
Hadoop Conference Japanは6回目、7年目
参加登録者数
1347名
約63%がはじめて参加される方!
いまの Hadoop
“Hadoop” は
ひとつのものではなくなった
様々な並列分散処理エンジンの登場
エコシステムの拡がり
パッケージングの多様さ
分散処理は
まだまだ
進化・変化・浸透していく
これからだ!
皆さまの応援に支えられています
実行委員や運営スタッフの皆さま
スポンサーの皆さま
ご意見やアイデアをくださる皆さま
ありがとうございます
スポンサー
会場のご案内
 8階のホワイエでは、
スポンサーによる展示、
出版社による書籍の
特別販売を行っています
 B、C、D会場へは、
階段もしくはエレベータで
7階に降りてください
【超重要!】
D会場は
7階廊下を経由して
6階に降りてください
ランチのご案内
 お弁当およびドリンクをご用意しています
 A会場前(8階ホワイエ)、C会場後方にて配布します
 リクルートテクノロジーズ様より
ご提供頂きました
ありがとうございます
 ゴミの確実な回収にご協力をお願いします
 A、B会場では、ライトニングトークを実施します
 C会場では、講演 「Spark超入門」 を実施します
懇親会のご案内
 講演終了後 17:00頃よりC会場にて懇親会を実施します
 事前参加登録をされていない方も当日参加できます
 参加費は 2000円
 ドリンクは Cloudera 様より
ご提供頂きます
ありがとうございます
 懇親会では、ライトニングトーク (詳細は配布チラシ) や
Hadoop 10周年記念のお祝い などを予定しています
 参加者には、オリジナル
キラキラシールをプレゼント
 お気軽にご参加ください
充実した1日を!

More Related Content

What's hot

大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?
大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?
大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?
maruyama097
 

What's hot (20)

Hadoopデータプラットフォーム #cwt2013
Hadoopデータプラットフォーム #cwt2013Hadoopデータプラットフォーム #cwt2013
Hadoopデータプラットフォーム #cwt2013
 
FluentdやNorikraを使った データ集約基盤への取り組み紹介
FluentdやNorikraを使った データ集約基盤への取り組み紹介FluentdやNorikraを使った データ集約基盤への取り組み紹介
FluentdやNorikraを使った データ集約基盤への取り組み紹介
 
Hadoopことはじめ
HadoopことはじめHadoopことはじめ
Hadoopことはじめ
 
Hadoop loves H2
Hadoop loves H2Hadoop loves H2
Hadoop loves H2
 
Apache Hadoop HDFSの最新機能の紹介(2018)#dbts2018
Apache Hadoop HDFSの最新機能の紹介(2018)#dbts2018Apache Hadoop HDFSの最新機能の紹介(2018)#dbts2018
Apache Hadoop HDFSの最新機能の紹介(2018)#dbts2018
 
大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?
大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?
大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?
 
HadoopとRDBMSをシームレスに連携させるSmart SQL Processing (Hadoop Conference Japan 2014)
HadoopとRDBMSをシームレスに連携させるSmart SQL Processing (Hadoop Conference Japan 2014)HadoopとRDBMSをシームレスに連携させるSmart SQL Processing (Hadoop Conference Japan 2014)
HadoopとRDBMSをシームレスに連携させるSmart SQL Processing (Hadoop Conference Japan 2014)
 
R使いがSparkを使ったら
R使いがSparkを使ったらR使いがSparkを使ったら
R使いがSparkを使ったら
 
16.02.08_Hadoop Conferece Japan 2016_データサイエンスにおける一次可視化からのSpark on Elasticsear...
16.02.08_Hadoop Conferece Japan 2016_データサイエンスにおける一次可視化からのSpark on Elasticsear...16.02.08_Hadoop Conferece Japan 2016_データサイエンスにおける一次可視化からのSpark on Elasticsear...
16.02.08_Hadoop Conferece Japan 2016_データサイエンスにおける一次可視化からのSpark on Elasticsear...
 
Sparkのクエリ処理系と周辺の話題
Sparkのクエリ処理系と周辺の話題Sparkのクエリ処理系と周辺の話題
Sparkのクエリ処理系と周辺の話題
 
データ分析に必要なスキルをつけるためのツール~Jupyter notebook、r連携、機械学習からsparkまで~
データ分析に必要なスキルをつけるためのツール~Jupyter notebook、r連携、機械学習からsparkまで~データ分析に必要なスキルをつけるためのツール~Jupyter notebook、r連携、機械学習からsparkまで~
データ分析に必要なスキルをつけるためのツール~Jupyter notebook、r連携、機械学習からsparkまで~
 
データサイズ2ペタ ソネット・メディア・ネットワークスでのImpala活用とHadoop運用
データサイズ2ペタ ソネット・メディア・ネットワークスでのImpala活用とHadoop運用データサイズ2ペタ ソネット・メディア・ネットワークスでのImpala活用とHadoop運用
データサイズ2ペタ ソネット・メディア・ネットワークスでのImpala活用とHadoop運用
 
リクルートライフスタイルの考える ストリームデータの活かし方(Hadoop Spark Conference2016)
リクルートライフスタイルの考えるストリームデータの活かし方(Hadoop Spark Conference2016)リクルートライフスタイルの考えるストリームデータの活かし方(Hadoop Spark Conference2016)
リクルートライフスタイルの考える ストリームデータの活かし方(Hadoop Spark Conference2016)
 
Hadoopによる大規模分散データ処理
Hadoopによる大規模分散データ処理Hadoopによる大規模分散データ処理
Hadoopによる大規模分散データ処理
 
20160127三木会 RDB経験者のためのspark
20160127三木会 RDB経験者のためのspark20160127三木会 RDB経験者のためのspark
20160127三木会 RDB経験者のためのspark
 
Apache Spark チュートリアル
Apache Spark チュートリアルApache Spark チュートリアル
Apache Spark チュートリアル
 
Hadoop / Elastic MapReduceつまみ食い
Hadoop / Elastic MapReduceつまみ食いHadoop / Elastic MapReduceつまみ食い
Hadoop / Elastic MapReduceつまみ食い
 
スケールアウト・インメモリ分析の標準フォーマットを目指す Apache Arrow と Value Vectors - Tokyo Apache Dril...
スケールアウト・インメモリ分析の標準フォーマットを目指す Apache Arrow と Value Vectors - Tokyo Apache Dril...スケールアウト・インメモリ分析の標準フォーマットを目指す Apache Arrow と Value Vectors - Tokyo Apache Dril...
スケールアウト・インメモリ分析の標準フォーマットを目指す Apache Arrow と Value Vectors - Tokyo Apache Dril...
 
第1回Hadoop関西勉強会参加レポート
第1回Hadoop関西勉強会参加レポート第1回Hadoop関西勉強会参加レポート
第1回Hadoop関西勉強会参加レポート
 
Hadoop / MapReduce とは
Hadoop / MapReduce とはHadoop / MapReduce とは
Hadoop / MapReduce とは
 

Viewers also liked

Viewers also liked (9)

JVM and OS Tuning for accelerating Spark application
JVM and OS Tuning for accelerating Spark applicationJVM and OS Tuning for accelerating Spark application
JVM and OS Tuning for accelerating Spark application
 
Sparkによる GISデータを題材とした時系列データ処理 (Hadoop / Spark Conference Japan 2016 講演資料)
Sparkによる GISデータを題材とした時系列データ処理 (Hadoop / Spark Conference Japan 2016 講演資料)Sparkによる GISデータを題材とした時系列データ処理 (Hadoop / Spark Conference Japan 2016 講演資料)
Sparkによる GISデータを題材とした時系列データ処理 (Hadoop / Spark Conference Japan 2016 講演資料)
 
2016-02-08 Spark MLlib Now and Beyond@Spark Conference Japan 2016
2016-02-08 Spark MLlib Now and Beyond@Spark Conference Japan 20162016-02-08 Spark MLlib Now and Beyond@Spark Conference Japan 2016
2016-02-08 Spark MLlib Now and Beyond@Spark Conference Japan 2016
 
Apache Sparkを用いたスケーラブルな時系列データの異常検知モデル学習ソフトウェアの開発
Apache Sparkを用いたスケーラブルな時系列データの異常検知モデル学習ソフトウェアの開発Apache Sparkを用いたスケーラブルな時系列データの異常検知モデル学習ソフトウェアの開発
Apache Sparkを用いたスケーラブルな時系列データの異常検知モデル学習ソフトウェアの開発
 
Hadoop Conference Japan 2016 LT資料 グラフデータベース事始め
Hadoop Conference Japan 2016 LT資料 グラフデータベース事始めHadoop Conference Japan 2016 LT資料 グラフデータベース事始め
Hadoop Conference Japan 2016 LT資料 グラフデータベース事始め
 
Apache Hadoop の現在と将来(Hadoop / Spark Conference Japan 2016 キーノート講演資料)
Apache Hadoop の現在と将来(Hadoop / Spark Conference Japan 2016 キーノート講演資料)Apache Hadoop の現在と将来(Hadoop / Spark Conference Japan 2016 キーノート講演資料)
Apache Hadoop の現在と将来(Hadoop / Spark Conference Japan 2016 キーノート講演資料)
 
Spark 2.0 What's Next (Hadoop / Spark Conference Japan 2016 キーノート講演資料)
Spark 2.0 What's Next (Hadoop / Spark Conference Japan 2016 キーノート講演資料)Spark 2.0 What's Next (Hadoop / Spark Conference Japan 2016 キーノート講演資料)
Spark 2.0 What's Next (Hadoop / Spark Conference Japan 2016 キーノート講演資料)
 
Hive on Spark を活用した高速データ分析 - Hadoop / Spark Conference Japan 2016
Hive on Spark を活用した高速データ分析 - Hadoop / Spark Conference Japan 2016Hive on Spark を活用した高速データ分析 - Hadoop / Spark Conference Japan 2016
Hive on Spark を活用した高速データ分析 - Hadoop / Spark Conference Japan 2016
 
sparksql-hive-bench-by-nec-hwx-at-hcj16
sparksql-hive-bench-by-nec-hwx-at-hcj16sparksql-hive-bench-by-nec-hwx-at-hcj16
sparksql-hive-bench-by-nec-hwx-at-hcj16
 

Similar to Hadoop / Spark Conference Japan 2016 ご挨拶・Hadoopを取り巻く環境

CRDF2011(20110225)
CRDF2011(20110225)CRDF2011(20110225)
CRDF2011(20110225)
真 岡本
 
新時代のエンタープライズデータマネジメント Drupal expo2017
新時代のエンタープライズデータマネジメント� Drupal expo2017新時代のエンタープライズデータマネジメント� Drupal expo2017
新時代のエンタープライズデータマネジメント Drupal expo2017
惠 紀野
 
PHPカンファレンス2014 協賛のご案内
PHPカンファレンス2014 協賛のご案内PHPカンファレンス2014 協賛のご案内
PHPカンファレンス2014 協賛のご案内
裕介 原田
 
20140711 evf2014 hadoop_recommendmachinelearning
20140711 evf2014 hadoop_recommendmachinelearning20140711 evf2014 hadoop_recommendmachinelearning
20140711 evf2014 hadoop_recommendmachinelearning
Takumi Yoshida
 

Similar to Hadoop / Spark Conference Japan 2016 ご挨拶・Hadoopを取り巻く環境 (20)

Hadoop / Spark Conference Japan 2019 ご挨拶・開催にあたって
Hadoop / Spark Conference Japan 2019 ご挨拶・開催にあたってHadoop / Spark Conference Japan 2019 ご挨拶・開催にあたって
Hadoop / Spark Conference Japan 2019 ご挨拶・開催にあたって
 
Introduction to Hadoop and Spark (before joining the other talk) and An Overv...
Introduction to Hadoop and Spark (before joining the other talk) and An Overv...Introduction to Hadoop and Spark (before joining the other talk) and An Overv...
Introduction to Hadoop and Spark (before joining the other talk) and An Overv...
 
Alibaba Cloud Apsara Conf 2019 report in Alieaters sapporo
Alibaba Cloud Apsara Conf 2019 report in Alieaters sapporoAlibaba Cloud Apsara Conf 2019 report in Alieaters sapporo
Alibaba Cloud Apsara Conf 2019 report in Alieaters sapporo
 
What makes Apache Spark?
What makes Apache Spark?What makes Apache Spark?
What makes Apache Spark?
 
Ssp before-making-os2
Ssp before-making-os2Ssp before-making-os2
Ssp before-making-os2
 
CRDF2011(20110225)
CRDF2011(20110225)CRDF2011(20110225)
CRDF2011(20110225)
 
Apache Spark の紹介(前半:Sparkのキホン)
Apache Spark の紹介(前半:Sparkのキホン)Apache Spark の紹介(前半:Sparkのキホン)
Apache Spark の紹介(前半:Sparkのキホン)
 
Apache Spark 1000 nodes NTT DATA
Apache Spark 1000 nodes NTT DATAApache Spark 1000 nodes NTT DATA
Apache Spark 1000 nodes NTT DATA
 
新時代のエンタープライズデータマネジメント Drupal expo2017
新時代のエンタープライズデータマネジメント� Drupal expo2017新時代のエンタープライズデータマネジメント� Drupal expo2017
新時代のエンタープライズデータマネジメント Drupal expo2017
 
「Drupal Camp in Tokyoやりまーす!」 at PHP Conference 2014 Tokyo
「Drupal Camp in Tokyoやりまーす!」 at PHP Conference 2014 Tokyo「Drupal Camp in Tokyoやりまーす!」 at PHP Conference 2014 Tokyo
「Drupal Camp in Tokyoやりまーす!」 at PHP Conference 2014 Tokyo
 
Spark at Scale
Spark at ScaleSpark at Scale
Spark at Scale
 
Drupalを活用した Linked Open Dataの 実践的試行環境の構築
Drupalを活用した Linked Open Dataの実践的試行環境の構築Drupalを活用した Linked Open Dataの実践的試行環境の構築
Drupalを活用した Linked Open Dataの 実践的試行環境の構築
 
SIerとオープンソースの美味しい関係 ~コミュニティの力を活かして世界を目指そう~
SIerとオープンソースの美味しい関係 ~コミュニティの力を活かして世界を目指そう~SIerとオープンソースの美味しい関係 ~コミュニティの力を活かして世界を目指そう~
SIerとオープンソースの美味しい関係 ~コミュニティの力を活かして世界を目指そう~
 
Apache Hadoopを利用したビッグデータ分析基盤
Apache Hadoopを利用したビッグデータ分析基盤Apache Hadoopを利用したビッグデータ分析基盤
Apache Hadoopを利用したビッグデータ分析基盤
 
Hadoop Summit 2016 San Jose レポート
Hadoop Summit 2016  San Jose レポートHadoop Summit 2016  San Jose レポート
Hadoop Summit 2016 San Jose レポート
 
PHPカンファレンス2014 協賛のご案内
PHPカンファレンス2014 協賛のご案内PHPカンファレンス2014 協賛のご案内
PHPカンファレンス2014 協賛のご案内
 
OSC2014 Tokyo/Spring Hadoop
OSC2014 Tokyo/Spring HadoopOSC2014 Tokyo/Spring Hadoop
OSC2014 Tokyo/Spring Hadoop
 
PHPカンファレンス2017 協賛のご案内
PHPカンファレンス2017 協賛のご案内PHPカンファレンス2017 協賛のご案内
PHPカンファレンス2017 協賛のご案内
 
カーネル読書会の作り方@ライブドア
カーネル読書会の作り方@ライブドアカーネル読書会の作り方@ライブドア
カーネル読書会の作り方@ライブドア
 
20140711 evf2014 hadoop_recommendmachinelearning
20140711 evf2014 hadoop_recommendmachinelearning20140711 evf2014 hadoop_recommendmachinelearning
20140711 evf2014 hadoop_recommendmachinelearning
 

More from Hadoop / Spark Conference Japan

More from Hadoop / Spark Conference Japan (10)

機械学習、グラフ分析、SQLによるサイバー攻撃対策事例(金融業界)
機械学習、グラフ分析、SQLによるサイバー攻撃対策事例(金融業界)機械学習、グラフ分析、SQLによるサイバー攻撃対策事例(金融業界)
機械学習、グラフ分析、SQLによるサイバー攻撃対策事例(金融業界)
 
マルチテナント Hadoop クラスタのためのモニタリング Best Practice
マルチテナント Hadoop クラスタのためのモニタリング Best Practiceマルチテナント Hadoop クラスタのためのモニタリング Best Practice
マルチテナント Hadoop クラスタのためのモニタリング Best Practice
 
Apache Kudu Fast Analytics on Fast Data (Hadoop / Spark Conference Japan 2016...
Apache Kudu Fast Analytics on Fast Data (Hadoop / Spark Conference Japan 2016...Apache Kudu Fast Analytics on Fast Data (Hadoop / Spark Conference Japan 2016...
Apache Kudu Fast Analytics on Fast Data (Hadoop / Spark Conference Japan 2016...
 
The Evolution and Future of Hadoop Storage (Hadoop Conference Japan 2016キーノート...
The Evolution and Future of Hadoop Storage (Hadoop Conference Japan 2016キーノート...The Evolution and Future of Hadoop Storage (Hadoop Conference Japan 2016キーノート...
The Evolution and Future of Hadoop Storage (Hadoop Conference Japan 2016キーノート...
 
Project Tungsten Bringing Spark Closer to Bare Meta (Hadoop / Spark Conferenc...
Project Tungsten Bringing Spark Closer to Bare Meta (Hadoop / Spark Conferenc...Project Tungsten Bringing Spark Closer to Bare Meta (Hadoop / Spark Conferenc...
Project Tungsten Bringing Spark Closer to Bare Meta (Hadoop / Spark Conferenc...
 
初めてのHadoopパッチ投稿 / How to Contribute to Hadoop (Cloudera World Tokyo 2014 LT講演資料)
初めてのHadoopパッチ投稿 / How to Contribute to Hadoop (Cloudera World Tokyo 2014 LT講演資料)初めてのHadoopパッチ投稿 / How to Contribute to Hadoop (Cloudera World Tokyo 2014 LT講演資料)
初めてのHadoopパッチ投稿 / How to Contribute to Hadoop (Cloudera World Tokyo 2014 LT講演資料)
 
MapReduce/Spark/Tezのフェアな性能比較に向けて (Cloudera World Tokyo 2014 LT講演)
MapReduce/Spark/Tezのフェアな性能比較に向けて (Cloudera World Tokyo 2014 LT講演)MapReduce/Spark/Tezのフェアな性能比較に向けて (Cloudera World Tokyo 2014 LT講演)
MapReduce/Spark/Tezのフェアな性能比較に向けて (Cloudera World Tokyo 2014 LT講演)
 
A Deeper Understanding of Spark Internals (Hadoop Conference Japan 2014)
A Deeper Understanding of Spark Internals (Hadoop Conference Japan 2014)A Deeper Understanding of Spark Internals (Hadoop Conference Japan 2014)
A Deeper Understanding of Spark Internals (Hadoop Conference Japan 2014)
 
Mahoutによるアルツハイマー診断支援へ向けた取り組み (Hadoop Confernce Japan 2014)
Mahoutによるアルツハイマー診断支援へ向けた取り組み (Hadoop Confernce Japan 2014)Mahoutによるアルツハイマー診断支援へ向けた取り組み (Hadoop Confernce Japan 2014)
Mahoutによるアルツハイマー診断支援へ向けた取り組み (Hadoop Confernce Japan 2014)
 
The Future of Apache Spark
The Future of Apache SparkThe Future of Apache Spark
The Future of Apache Spark
 

Recently uploaded

研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
atsushi061452
 

Recently uploaded (14)

Keywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltdKeywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltd
 
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
 
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
 
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
 
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
 
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
 
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
 
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
 
Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )
 
20240523_IoTLT_vol111_kitazaki_v1___.pdf
20240523_IoTLT_vol111_kitazaki_v1___.pdf20240523_IoTLT_vol111_kitazaki_v1___.pdf
20240523_IoTLT_vol111_kitazaki_v1___.pdf
 
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
 
情報を表現するときのポイント
情報を表現するときのポイント情報を表現するときのポイント
情報を表現するときのポイント
 
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
 
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
 

Hadoop / Spark Conference Japan 2016 ご挨拶・Hadoopを取り巻く環境