Sustentabilidade / Renováveis e Pilhas de Combustível  João Toste de Azevedo Luis Manuel Alves  ECONOMIA DO HIDROGÉNIO, UM...
CONTENTS <ul><li>Utsira, Norway </li></ul><ul><li>Attica, Greece </li></ul><ul><li>Mljet, Croatia </li></ul><ul><li>Porto ...
Utsira, Norway Utsira –  wind hydrogen energy system Norsk Hydro
Utsira – wind-hydrogen Stand Alone Power System (SAPS)
Utsira – wind-hydrogen Stand Alone Power System (SAPS) SAPS Customers
Wind-Hydrogen SAPS
Wind-Hydrogen SAPS
Hydrogen ”Battery” Renewable power source Consumer  Power conditioning/ controller DC or AC AC Electrolyser Hydrogen Fuel ...
Utsira Wind-Hydrogen SAPS Haugaland Kraft Norsk Hydro Electrolyser Enercon Haugaland Kraft
Utsira – wind-hydrogen Stand Alone energy system
Load profile - customers Peak load:  ~ 50 kW Energy consume:  ~ 190 MWh/year
Hourly rate of load
Component characteristics <ul><li>Electrolyser: 50 kW peak  (4.8 kWh / Nm 3  assumed) (50-100% operation possible only) </...
Energy characteristics <ul><li>E WECS   = 2805 MWh / yr </li></ul><ul><li>E el.load (10 houses) = 196 MWh / yr  = 19 600 k...
Power balance (wind   – el.   load)
State of charge – storage unit Critical period: Storage may be reduced by use of battery
Electrolyser and genset
Electrolyser and genset <ul><li>Genset:  </li></ul><ul><ul><li>Starts & stops: ~ 60 yr -1 </li></ul></ul><ul><ul><li>Opera...
Storage size <ul><li>13 m 3  @ 200 bar = 2300 Nm 3 </li></ul><ul><li>This may be reduced by the introduction of a battery ...
Attica, Greece RES & Hydrogen Technologies Integration Section RES Directorate CRES
Wind hydrogen test site  (RES2H2) General View of  wind-hydrogen installation   100  Nm 3  in cylinders Filling station Si...
Wind hydrogen test site  (RES2H2)
<ul><ul><li>RES & H2 Technologies Integration Laboratory of CRES </li></ul></ul><ul><ul><li>Objective:  The integration of...
Mljet, Croatia W ind -solar  hydrogen energy system University of Zagreb
 
MLJET - Power system Mljet  load  2002 -15 .
MLJET - Resources
MLJET - Renewable Island 4 x 33 kW 1 x 300,5 kW PV paneli =12 000 m 2   51% potrošnje 2005. + 0,74 GWh = 74% 2005.
MLJET - Renewable Island 4 x 33 kW 3 x 300,5 kW PV panel s  =92 000 m 2
 
Porto Santo, Portugal EDEN – PPS3 wind hydrogen energy system
Location  <ul><li>Near   Parque Eólico do Cabeço do Carvalho owned by EEM </li></ul>
Layout Scheme <ul><li>Main Equipment: </li></ul><ul><ul><li>Fuel Cell (PEM) of 7,5 kW </li></ul></ul><ul><ul><li>PEM Elect...
Hydrogen System Electricity Electricity H 2 H 2
<ul><li>OBRIGADO </li></ul>
Upcoming SlideShare
Loading in …5
×

17 Nov 08 Toste de Azevedo

887 views

Published on

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
887
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
16
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

17 Nov 08 Toste de Azevedo

  1. 1. Sustentabilidade / Renováveis e Pilhas de Combustível João Toste de Azevedo Luis Manuel Alves ECONOMIA DO HIDROGÉNIO, UM DESAFIO PARA PORTUGAL Iniciativas para uma Plataforma Tecnológica Vimeiro, 17 de Novembro de 2008
  2. 2. CONTENTS <ul><li>Utsira, Norway </li></ul><ul><li>Attica, Greece </li></ul><ul><li>Mljet, Croatia </li></ul><ul><li>Porto Santo, Portugal </li></ul>
  3. 3. Utsira, Norway Utsira – wind hydrogen energy system Norsk Hydro
  4. 4. Utsira – wind-hydrogen Stand Alone Power System (SAPS)
  5. 5. Utsira – wind-hydrogen Stand Alone Power System (SAPS) SAPS Customers
  6. 6. Wind-Hydrogen SAPS
  7. 7. Wind-Hydrogen SAPS
  8. 8. Hydrogen ”Battery” Renewable power source Consumer Power conditioning/ controller DC or AC AC Electrolyser Hydrogen Fuel cell / H 2 -engine H 2 -refuelling station DC DC Heat
  9. 9. Utsira Wind-Hydrogen SAPS Haugaland Kraft Norsk Hydro Electrolyser Enercon Haugaland Kraft
  10. 10. Utsira – wind-hydrogen Stand Alone energy system
  11. 11. Load profile - customers Peak load: ~ 50 kW Energy consume: ~ 190 MWh/year
  12. 12. Hourly rate of load
  13. 13. Component characteristics <ul><li>Electrolyser: 50 kW peak (4.8 kWh / Nm 3 assumed) (50-100% operation possible only) </li></ul><ul><li>HEGS: 60 kW peak (0-100% operation possible) </li></ul><ul><li>Storage unit: Compressed gas – 200 bar </li></ul><ul><li>Compressor: Not included </li></ul><ul><li>Battery: Not included </li></ul>
  14. 14. Energy characteristics <ul><li>E WECS = 2805 MWh / yr </li></ul><ul><li>E el.load (10 houses) = 196 MWh / yr = 19 600 kWh / yr / house </li></ul><ul><li>E deficiency = E HEGS = 15 MWh / yr </li></ul><ul><li>E exported = 2544 MWh / yr </li></ul><ul><li>E to_load & H2-system = 261 MWh / yr </li></ul><ul><li>E toH2-system = E ELY = 65 MWh / yr </li></ul><ul><li>Energy efficiency for H 2 -system = 23% </li></ul>
  15. 15. Power balance (wind – el. load)
  16. 16. State of charge – storage unit Critical period: Storage may be reduced by use of battery
  17. 17. Electrolyser and genset
  18. 18. Electrolyser and genset <ul><li>Genset: </li></ul><ul><ul><li>Starts & stops: ~ 60 yr -1 </li></ul></ul><ul><ul><li>Operation hrs: 977 h / yr </li></ul></ul><ul><li>Electrolyser: </li></ul><ul><ul><li>Starts & stops: ~ 50 yr -1 </li></ul></ul><ul><ul><li>Operation hrs: 2106 h / yr </li></ul></ul>
  19. 19. Storage size <ul><li>13 m 3 @ 200 bar = 2300 Nm 3 </li></ul><ul><li>This may be reduced by the introduction of a battery </li></ul><ul><li>Just below 10 m 3 should be possible </li></ul>
  20. 20. Attica, Greece RES & Hydrogen Technologies Integration Section RES Directorate CRES
  21. 21. Wind hydrogen test site (RES2H2) General View of wind-hydrogen installation 100 Nm 3 in cylinders Filling station Single stage 10 - 220 bar Hydrogen compressor LaNi 5 type 40 Nm 3 in MH tanks Metal hydride tanks 25 kW, 5 Nm 3 /h H 2 20 bar 99.98 %v. purity Alkaline Electrolyser 500 kW Wind Turbine October 2005 Start-up Key data Key Components
  22. 22. Wind hydrogen test site (RES2H2)
  23. 23. <ul><ul><li>RES & H2 Technologies Integration Laboratory of CRES </li></ul></ul><ul><ul><li>Objective: The integration of </li></ul></ul><ul><ul><ul><li>hydrogen production technologies (alkaline and PEM electrolysis – biotehanol reforming), </li></ul></ul></ul><ul><ul><ul><li>hydrogen storage technologies (compressed gaseous storage and in metal hydrides) </li></ul></ul></ul><ul><ul><ul><li>hydrogen re-electrification technologies (PEM fuel cells and Alkaline Fuel Cells) in an existing PV-based hybrid system </li></ul></ul></ul><ul><ul><li>Total Budget: 440.000 Euro </li></ul></ul>
  24. 24. Mljet, Croatia W ind -solar hydrogen energy system University of Zagreb
  25. 26. MLJET - Power system Mljet load 2002 -15 .
  26. 27. MLJET - Resources
  27. 28. MLJET - Renewable Island 4 x 33 kW 1 x 300,5 kW PV paneli =12 000 m 2 51% potrošnje 2005. + 0,74 GWh = 74% 2005.
  28. 29. MLJET - Renewable Island 4 x 33 kW 3 x 300,5 kW PV panel s =92 000 m 2
  29. 31. Porto Santo, Portugal EDEN – PPS3 wind hydrogen energy system
  30. 32. Location <ul><li>Near Parque Eólico do Cabeço do Carvalho owned by EEM </li></ul>
  31. 33. Layout Scheme <ul><li>Main Equipment: </li></ul><ul><ul><li>Fuel Cell (PEM) of 7,5 kW </li></ul></ul><ul><ul><li>PEM Electrolyser with a production rate of 2 m 3 N/h of H 2 </li></ul></ul><ul><ul><li>Water Deionizer with a production capacity of 50 l of deionised water per day </li></ul></ul><ul><ul><li>Storage vessel for H 2 with a 55 m 3 N capacity </li></ul></ul><ul><ul><li>Monitoring and Control System for the complete system </li></ul></ul>
  32. 34. Hydrogen System Electricity Electricity H 2 H 2
  33. 35. <ul><li>OBRIGADO </li></ul>

×