Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
 
OVERVIEW <ul><li>Chlorine Dioxide use & attributes </li></ul><ul><li>Review of ClO 2  generation used in drinking water ap...
ClO2 Molecular Attributes <ul><li>Lowest Oxidation-Reduction Potential </li></ul><ul><li>Selective Oxidizer Which Does Not...
Oxidation/Reduction Potentials Compound ORP (Volts) Oxidation Capacity Ozone (O3) 2.07 2 Electrons Hydrogen Peroxide (H2O2...
Comparison of Disinfectant Oxidation Potentials (EOP) of Various Oxidants ClO 2  reacts  by oxidation,  but is not a  stro...
Does Not React With Background Organics <ul><li>Does Not React With </li></ul><ul><ul><li>Aldehydes Ethers </li></ul></ul>...
ClO 2  Efficacy from Chemical Selectivity <ul><li>HOCl, H 2 O 2  and O 3  Are Indiscriminant Oxidants   </li></ul><ul><ul>...
Bacterial Biofilm…  What is it? <ul><li>Sessile microorganisms embedded in a gelatinous matrix. </li></ul><ul><li>Anchored...
<ul><li>Aerobic Bacteria </li></ul><ul><ul><li>Slimers -  Pseudomonads, Mucoids   </li></ul></ul><ul><ul><li>Spores -  Bac...
Heterogeneity of Biofilm structure and function
Interpretation of Biofilm Diversity <ul><li>Aerobic and anaerobic species capable of co-  existing. </li></ul><ul><li>Prol...
3 step Biofilm life cycle
<ul><li>Good planktonic control does not always correlate with good biofilm control </li></ul><ul><li>A biofilm under low ...
Attachment Surface Bulk Water ClO 2 S-S ClO 2 - ClO 2 H + Catalytic ClO 2  Chemistry in Biofilm Sodium Chlorite/Chlorate S...
Dissociation vs. pH pH 100 90 80 70 60 50 40 30 20 10 0 7 8 9 10 1 1 12 13 14 HOBr OBr - HOCl OCl- Percent Hypohalous Acid...
Chlorine Dioxide-Manganese Reaction <ul><li>2Cl0 2  + Mn 2+  +2H 2 O    2Cl0 2 -  + MnO 2  + 4H + </li></ul><ul><li>Theor...
Chlorine Dioxide-Iron Reaction <ul><li>Cl0 2  + Fe 2+      Fe 3+  + Cl0 2 - </li></ul><ul><li>Fe 3+  + 3 OH -     Fe(OH)...
<ul><li>Dual Wet Chem Generators </li></ul><ul><li>Chlorine Gas </li></ul><ul><li>Sodium Chlorite (dry or liquid) </li></u...
Traditional ClO 2  Generation Methods <ul><li>Cumbersome </li></ul><ul><li>Increased chemical handling  </li></ul><ul><li>...
Electrochemical ClO 2   Generation <ul><li>SIMPLE </li></ul><ul><li>Turnkey installation </li></ul><ul><li>Fully automated...
PureLine ®  HP-Series Generators Electrochemical  ClO 2  Production: Anode:  ClO 2 -     ClO 2   +  e -   + Na + Cathode:...
PureLine ™  HP-Series Electro-chemical ClO 2  Generator   Electrochemical Production of Chlorine Dioxide: Anode:  ClO 2 - ...
 
Electrochemical CIO 2  Advantages <ul><li>Provides 99.5% Pure ClO 2 </li></ul><ul><li>Single Precursor (PureCide 25 TM  so...
Electrochemical CIO 2 Operational Costs Electrical Consumption Per Pound of ClO 2   55 watts per lb. Chlorine Dioxide $0.0...
DBP Monitoring <ul><li>Greenville, Il:  </li></ul><ul><li>Testing Started in 1990  </li></ul><ul><ul><li>101 ppb TTHM (1 s...
Ways to Minimize DBPs <ul><li>Upgrade to Micro-Filtration </li></ul><ul><li>Move Back the Cl2 Pre-Disinfection Point  </li...
Ways to Minimize DBPs <ul><li>Microfiltration </li></ul><ul><ul><li>Very effective, non-chemical means to remove suspended...
Ways to Minimize DBPs <ul><li>Move Back the Cl 2  Pre-Disinfection Point </li></ul><ul><ul><li>Reduction in CT- credits </...
Ways to Minimize DBPs <ul><li>Pre-Disinfect with Ozone </li></ul><ul><li>-  Increases the potential for biodegradable  org...
Ways to Minimize DBPs <ul><li>Pre-Disinfect with Chlorine Dioxide </li></ul><ul><ul><li>More efficacy at a lower dose than...
ClO 2  On-Site Generation <ul><li>Prefer the chemistry of ClO 2 , but are concerned about: </li></ul><ul><li>storing and h...
ClO 2  Regulatory Status <ul><li>MRDL of 1.0 mg/L – Chlorite/Chlorate Ion </li></ul><ul><li>MCL of 0.8 mg/L – Chlorine Dio...
Chlorine Dioxide, Chlorite, Chlorate  Analytical Methods <ul><li>Compliance monitoring for measuring residual Chlorine Dio...
Typical ClO 2  Feed Point SOURCE WATER SILT & MUD TANK PRIMARY SETTLING BASIN SECONDARY SETTLING BASIN FLOCCULATION BASIN ...
Pure ClO 2  Results <ul><li>Use of pure ClO 2  for pre-disinfection </li></ul><ul><li>provided several benefits: </li></ul...
Pure ClO 2  Results  Improved Disinfection and DBP Reduction <ul><li>Addition of Chlorine Dioxide allowed the plant to dis...
Pure ClO 2  Results
Chlorine “Chlorinates”, Chlorine Dioxide “Oxidizes” HOCl  +  Organic     Cl-Organic    (THM/HAA/AOX) ClO 2  (O=Cl=O)  +  ...
Pure ClO 2  Results – Taste & Odor <ul><li>Taste & Odor greatly improved even with the discontinued use of Carbon & KMnO4 ...
Pure ClO 2  Results – Improved Safety   Greenville, Il <ul><li>Cl 2  gas cylinder usage reduced by 50% </li></ul><ul><li>A...
Conclusions The City of Greenville was faced with unacceptably high concentrations of DBPs due to pre- and post-chlorinati...
Conclusions ClO 2  chosen over alternatives: - increased CT-credits - improved DBP reduction - eliminated KnMnO4 & Carbon ...
Conclusions Pre-disinfection with pure ClO 2  provided a very cost-effective means for dramatically reducing DBP levels wh...
Conclusions Use of Pure CIO 2  Resulted in : <ul><li>increase in CT credits </li></ul><ul><li>82% TTHM reduction Q2 2008 v...
Questions? PureLine Treatment Systems www.pureline.com
Upcoming SlideShare
Loading in …5
×

Irwa Presentation 2009

1,135 views

Published on

Chlorine Dioxide Presentation for Illinois Rural Water Association

  • Be the first to comment

Irwa Presentation 2009

  1. 2. OVERVIEW <ul><li>Chlorine Dioxide use & attributes </li></ul><ul><li>Review of ClO 2 generation used in drinking water applications: </li></ul><ul><ul><li>3-Chem (12.5% Bleach +25% NaClO 2 +15%HCL Acid) </li></ul></ul><ul><ul><li>2-Chem (Cl 2 gas + 25%NaClO 2 ) </li></ul></ul><ul><ul><li>Electrochemical (25%NaClO 2 + H 2 O) </li></ul></ul><ul><li>Results from ClO 2 pre-disinfection applications </li></ul>
  2. 3. ClO2 Molecular Attributes <ul><li>Lowest Oxidation-Reduction Potential </li></ul><ul><li>Selective Oxidizer Which Does Not React With Background Organics </li></ul><ul><li>Effective For the Removal of Bio-Film </li></ul><ul><li>Works Over a Broad pH Range </li></ul><ul><li>Readily Reacts With Iron & Manganese </li></ul>
  3. 4. Oxidation/Reduction Potentials Compound ORP (Volts) Oxidation Capacity Ozone (O3) 2.07 2 Electrons Hydrogen Peroxide (H2O2) 1.76 2 Electrons Hypochlorous Acid (HOCl) 1.49 2 Electrons Chlorine (Cl2) 1.36 2 Electrons Hypobromus Acid (HOBr) 1.33 2 Electrons Chlorine Dioxide (ClO2) 0.95 5 Electrons
  4. 5. Comparison of Disinfectant Oxidation Potentials (EOP) of Various Oxidants ClO 2 reacts by oxidation, but is not a strong oxidizer Why does ClO 2 work so well at low doses?
  5. 6. Does Not React With Background Organics <ul><li>Does Not React With </li></ul><ul><ul><li>Aldehydes Ethers </li></ul></ul><ul><ul><li>Ammonia Fats </li></ul></ul><ul><ul><li>Acids Glycols </li></ul></ul><ul><ul><li>Alkanes Ketones </li></ul></ul><ul><ul><li>Alkynes Polysaccharides </li></ul></ul><ul><ul><li>Alcohols Saccharides </li></ul></ul><ul><ul><li>Amines Unsaturated Fatty Acids </li></ul></ul><ul><ul><li>Carbohydrates Unsaturated Aromatics </li></ul></ul>
  6. 7. ClO 2 Efficacy from Chemical Selectivity <ul><li>HOCl, H 2 O 2 and O 3 Are Indiscriminant Oxidants </li></ul><ul><ul><li>React with nearly any organic or inorganic species present </li></ul></ul><ul><ul><li>Consumed by useless side-reactions </li></ul></ul><ul><li>Chlorine Dioxide Reacts Selectively </li></ul><ul><ul><li>Reacts rapidly with sulfides (S 2- ) </li></ul></ul><ul><ul><li>Reacts rapidly with aromatic hydroxides (phenols) </li></ul></ul><ul><ul><li>ClO 2 less effected by organic contamination </li></ul></ul>
  7. 8. Bacterial Biofilm… What is it? <ul><li>Sessile microorganisms embedded in a gelatinous matrix. </li></ul><ul><li>Anchored to a surface by polymeric sugars (polysaccharides). </li></ul><ul><li>Factors affecting biofilm formation include nutrient availability hydrodynamics, composition of microbial community, and cellular transport . </li></ul>
  8. 9. <ul><li>Aerobic Bacteria </li></ul><ul><ul><li>Slimers - Pseudomonads, Mucoids </li></ul></ul><ul><ul><li>Spores - Bacillis Subtilis </li></ul></ul><ul><ul><li>Fecal - Enterobacter </li></ul></ul><ul><ul><li>Ubiquitous - Anabena, Asterionella </li></ul></ul><ul><li>Anaerobic Bacteria </li></ul><ul><ul><li>Sulfate Reducing Bacteria – Desulfovibrio </li></ul></ul><ul><ul><li>Iron Reducing Bacteria – Gallionella </li></ul></ul><ul><li>Protozoa </li></ul><ul><ul><li>Consume bacteria </li></ul></ul>Types & Kinds of Micro-organisms
  9. 10. Heterogeneity of Biofilm structure and function
  10. 11. Interpretation of Biofilm Diversity <ul><li>Aerobic and anaerobic species capable of co- existing. </li></ul><ul><li>Proliferating and dormant species co-exist. </li></ul><ul><li>Single layer to 3 dimensional structures. </li></ul><ul><li>Unicellular to multi-cellular. </li></ul><ul><li>Biofilm remediation indicates that a weaker disinfectant, (if it penetrates) will easily outperform a strong disinfectant that fails to penetrate </li></ul>
  11. 12. 3 step Biofilm life cycle
  12. 13. <ul><li>Good planktonic control does not always correlate with good biofilm control </li></ul><ul><li>A biofilm under low continuous stress may persist and continue to grow slowly </li></ul><ul><li>Typically monitor planktonic counts, leaving us with a false sense of security </li></ul><ul><li>High stress can “shock” biofilm off walls, resulting in more complete disinfection </li></ul><ul><li>Therefore, best practice for biofilm elimination is not continuous feeding of disinfectant, but shock treatment of the films </li></ul>Biofilm vs. Planktonic Control
  13. 14. Attachment Surface Bulk Water ClO 2 S-S ClO 2 - ClO 2 H + Catalytic ClO 2 Chemistry in Biofilm Sodium Chlorite/Chlorate Sodium Chlorite/Chlorate
  14. 15. Dissociation vs. pH pH 100 90 80 70 60 50 40 30 20 10 0 7 8 9 10 1 1 12 13 14 HOBr OBr - HOCl OCl- Percent Hypohalous Acid ClO 2 pH % HOBr % HOCl % ClO 2 7.5 8.0 8.5 9.0 94 83 60 33 48 22 9 3 100 100 100 98 2 ClO 2 ClO 2 - + ClO 3 -
  15. 16. Chlorine Dioxide-Manganese Reaction <ul><li>2Cl0 2 + Mn 2+ +2H 2 O  2Cl0 2 - + MnO 2 + 4H + </li></ul><ul><li>Theoretical Consumption </li></ul><ul><li>2.45 mg of Cl0 2 per mg of Mn 2+ </li></ul>
  16. 17. Chlorine Dioxide-Iron Reaction <ul><li>Cl0 2 + Fe 2+  Fe 3+ + Cl0 2 - </li></ul><ul><li>Fe 3+ + 3 OH -  Fe(OH) 3 </li></ul><ul><li>Theoretical Consumption </li></ul><ul><li>1.2 mg of Cl0 2 per mg of Fe 2+ </li></ul>
  17. 18. <ul><li>Dual Wet Chem Generators </li></ul><ul><li>Chlorine Gas </li></ul><ul><li>Sodium Chlorite (dry or liquid) </li></ul><ul><li>Three Wet Chem Generators </li></ul><ul><li>12.5% Sodium Hypo-chlorite </li></ul><ul><li>15% Hydrochloric Acid </li></ul><ul><li>25% Sodium Chlorite </li></ul>Traditional ClO 2 Generation Methods
  18. 19. Traditional ClO 2 Generation Methods <ul><li>Cumbersome </li></ul><ul><li>Increased chemical handling </li></ul><ul><li>and management </li></ul><ul><li>Difficult to optimize CLO 2 </li></ul><ul><li>conversation </li></ul><ul><li>CLO 2 external batch tank </li></ul><ul><li>required </li></ul><ul><li>Complicated </li></ul><ul><li>Difficult to operate, troubleshoot </li></ul><ul><li>and repair </li></ul><ul><li>Impure Product </li></ul><ul><li>need to over feed acid and </li></ul><ul><li>bleach for a higher percent </li></ul><ul><li>conversation </li></ul><ul><li>increases more unwanted </li></ul><ul><li>by-products </li></ul>
  19. 20. Electrochemical ClO 2 Generation <ul><li>SIMPLE </li></ul><ul><li>Turnkey installation </li></ul><ul><li>Fully automated </li></ul><ul><li>Color touch screen PLC controller </li></ul><ul><li>interface </li></ul><ul><li>Flow paced feed </li></ul><ul><li>SAFE </li></ul><ul><li>single precursor technology </li></ul><ul><li>(PureCide 25 TM solution) </li></ul><ul><li>reliable operation </li></ul><ul><li>multiple safety interlocks </li></ul><ul><li>and alarm features </li></ul><ul><li>PURE </li></ul><ul><li>99.5% pure CLO2 gas </li></ul><ul><li>CLO 2 gas diluted with water into </li></ul><ul><li>adsorption column </li></ul>
  20. 21. PureLine ® HP-Series Generators Electrochemical ClO 2 Production: Anode: ClO 2 -  ClO 2 + e - + Na + Cathode: H 2 O + e -  1/2 H 2 + OH - Na + + OH -  NaOH
  21. 22. PureLine ™ HP-Series Electro-chemical ClO 2 Generator Electrochemical Production of Chlorine Dioxide: Anode: ClO 2 - ----> ClO 2 + e - Cathode: H 2 O + e - ---> 1/2 H 2 + OH - (0.1%H 2 ) Na + + OH - ---> NaOH
  22. 24. Electrochemical CIO 2 Advantages <ul><li>Provides 99.5% Pure ClO 2 </li></ul><ul><li>Single Precursor (PureCide 25 TM solution) </li></ul><ul><li>On-Demand Feed Control </li></ul><ul><li>No External Water Pretreatment Required </li></ul><ul><li>ClO 2 Production Capacity Up To 80 lbs/day </li></ul><ul><li>DCS Capable/Automated Feed Control </li></ul>
  23. 25. Electrochemical CIO 2 Operational Costs Electrical Consumption Per Pound of ClO 2 55 watts per lb. Chlorine Dioxide $0.085/KWH = $7.14 per day electrical usage PureCide 25 TM solution Consumption 6.6 lbs Per Pound of ClO 2
  24. 26. DBP Monitoring <ul><li>Greenville, Il: </li></ul><ul><li>Testing Started in 1990 </li></ul><ul><ul><li>101 ppb TTHM (1 st Quarter Average) </li></ul></ul><ul><ul><li>47 ppb TTHM (2 nd Quarter Average) </li></ul></ul><ul><ul><li>123 ppb TTHM (3 rd Quarter Average) </li></ul></ul><ul><ul><li>107 ppb TTHM (4 th Quarter Average) </li></ul></ul>What To Do? What are my choices?
  25. 27. Ways to Minimize DBPs <ul><li>Upgrade to Micro-Filtration </li></ul><ul><li>Move Back the Cl2 Pre-Disinfection Point </li></ul><ul><li>Pre-Disinfect with Ozone or UV </li></ul><ul><li>Pre-Disinfect with </li></ul><ul><li>Chlorine Dioxide </li></ul>
  26. 28. Ways to Minimize DBPs <ul><li>Microfiltration </li></ul><ul><ul><li>Very effective, non-chemical means to remove suspended particulates down to sub-micron levels </li></ul></ul><ul><ul><li>Very expensive: ~ $8-$10 MM fully installed for 2.5 MM GPD </li></ul></ul><ul><ul><li>Requires extensive </li></ul></ul><ul><ul><li>maintenance </li></ul></ul>
  27. 29. Ways to Minimize DBPs <ul><li>Move Back the Cl 2 Pre-Disinfection Point </li></ul><ul><ul><li>Reduction in CT- credits </li></ul></ul><ul><ul><li>Increased corrosion if an increased Cl 2 dose is required for CT-credit </li></ul></ul><ul><ul><li>pH sensitive </li></ul></ul>
  28. 30. Ways to Minimize DBPs <ul><li>Pre-Disinfect with Ozone </li></ul><ul><li>- Increases the potential for biodegradable organic matter, creating a requirement for a biologically active filter. </li></ul><ul><ul><li>Complex operation requires significant training and maintenance </li></ul></ul><ul><ul><li>Capital costs estimated at $0.5 to $1 MM </li></ul></ul><ul><ul><li>No THMs or HAAs, but potential for bromate formation (10 ppb MCL) </li></ul></ul><ul><ul><li>Bromate formation occurs faster than pathogen inactivation, Bromate increase with increase of O 3 dosage feed. </li></ul></ul><ul><ul><li>High efficacy at low dose </li></ul></ul><ul><ul><li>Must be produced on-site </li></ul></ul><ul><ul><li>Energy intensive </li></ul></ul><ul><ul><li>No residual </li></ul></ul>
  29. 31. Ways to Minimize DBPs <ul><li>Pre-Disinfect with Chlorine Dioxide </li></ul><ul><ul><li>More efficacy at a lower dose than Cl 2 (CT-values) </li></ul></ul><ul><ul><li>Not sensitive to pH </li></ul></ul><ul><ul><li>No THM or HAA production </li></ul></ul><ul><ul><li>No bromate production </li></ul></ul><ul><ul><li>Must be produced on-site </li></ul></ul><ul><ul><li>Effective for taste and odor </li></ul></ul><ul><ul><li>Effective for turbidity reduction </li></ul></ul><ul><ul><li>Minimal capital cost expenditure </li></ul></ul>
  30. 32. ClO 2 On-Site Generation <ul><li>Prefer the chemistry of ClO 2 , but are concerned about: </li></ul><ul><li>storing and handling multiple chemical precursors </li></ul><ul><li>purity of the ClO 2 generated </li></ul><ul><li>monitoring and maintaining ClO 2 and NaClO 2 residuals below the MCLs </li></ul><ul><li>reliability and simplicity of the generation and feed system </li></ul>
  31. 33. ClO 2 Regulatory Status <ul><li>MRDL of 1.0 mg/L – Chlorite/Chlorate Ion </li></ul><ul><li>MCL of 0.8 mg/L – Chlorine Dioxide </li></ul>
  32. 34. Chlorine Dioxide, Chlorite, Chlorate Analytical Methods <ul><li>Compliance monitoring for measuring residual Chlorine Dioxide </li></ul><ul><li>A) DPD Standard Method 4500-CLO 2 D </li></ul><ul><li>B) Amperometric Titration Method II </li></ul><ul><li>Standard Method 4500-CLO 2 E </li></ul><ul><li>Compliance monitoring for measuring residual Chlorite/Chlorate Ion </li></ul><ul><li>A) Amperometric Titration </li></ul><ul><li>Standard Method 4500-CLO 2 E, </li></ul><ul><li>B) Ion Chromatography EPA Method 300.0 & 300.1 </li></ul><ul><li>Amperometric Titration may be used for routine daily monitoring of Chlorite at the entrance to the distribution system. </li></ul>
  33. 35. Typical ClO 2 Feed Point SOURCE WATER SILT & MUD TANK PRIMARY SETTLING BASIN SECONDARY SETTLING BASIN FLOCCULATION BASIN (SLOW MIXER) COAGULATION BASIN (FLASH MIXER ) CLEAR WELL COAL & SAND FILTER BAR SCREENS CHLORINE DIOXIDE LOW LIFT PUMPS SLUDGE DISPOSAL TO CANAL SLUDGE RETURNED TO CANAL CHLORINE HIGH LIFT PUMPS TO DISTRIBUTION SYSTEM LIME IRON CARBON POLY-ELECTROLYTES
  34. 36. Pure ClO 2 Results <ul><li>Use of pure ClO 2 for pre-disinfection </li></ul><ul><li>provided several benefits: </li></ul><ul><li>Improved disinfection </li></ul><ul><li>Improved DBP reduction </li></ul><ul><li>Improved turbidity reduction </li></ul><ul><li>Improved taste and odor </li></ul><ul><li>Improved safety </li></ul>
  35. 37. Pure ClO 2 Results Improved Disinfection and DBP Reduction <ul><li>Addition of Chlorine Dioxide allowed the plant to discontinue Carbon & KMnO4 </li></ul><ul><li>Chlorite residuals remained well below the MCLs in the distribution system </li></ul><ul><li>82% DBP reduction in 2008 Q2 levels vs. 2007 Q2 levels </li></ul><ul><li>76% DBP reduction YTD 2008 vs. 2007 </li></ul>
  36. 38. Pure ClO 2 Results
  37. 39. Chlorine “Chlorinates”, Chlorine Dioxide “Oxidizes” HOCl + Organic  Cl-Organic (THM/HAA/AOX) ClO 2 (O=Cl=O) + Organic  O-Organic (-) O 3 (O-O-O) + Organic  O-Organic (-)
  38. 40. Pure ClO 2 Results – Taste & Odor <ul><li>Taste & Odor greatly improved even with the discontinued use of Carbon & KMnO4 </li></ul><ul><li>Oxidation of metals and organics to make more negatively charged particles that readily bond to the cationic coagulant </li></ul><ul><li>“ People in town were asking what had changed. The water tasted more like bottled water.” </li></ul>
  39. 41. Pure ClO 2 Results – Improved Safety Greenville, Il <ul><li>Cl 2 gas cylinder usage reduced by 50% </li></ul><ul><li>Automated feed system provided operator-free operation </li></ul><ul><li>KMnO4 & Carbon elimination resulted in reduced operator exposure to chemicals </li></ul>
  40. 42. Conclusions The City of Greenville was faced with unacceptably high concentrations of DBPs due to pre- and post-chlorination of surface water.
  41. 43. Conclusions ClO 2 chosen over alternatives: - increased CT-credits - improved DBP reduction - eliminated KnMnO4 & Carbon - improved operator safety - simplicity of feed
  42. 44. Conclusions Pre-disinfection with pure ClO 2 provided a very cost-effective means for dramatically reducing DBP levels while improving the microbial control, turbidity, taste and odor with a reduction in chemical use resulting in a 3.5 – 4 year ROI.
  43. 45. Conclusions Use of Pure CIO 2 Resulted in : <ul><li>increase in CT credits </li></ul><ul><li>82% TTHM reduction Q2 2008 vs. Q2 2007 </li></ul><ul><li>76% TTHM reduction in 2008 vs. 2007 </li></ul><ul><li>50% reduction in use of Cl2 gas </li></ul><ul><li>Improved taste & odor </li></ul>
  44. 46. Questions? PureLine Treatment Systems www.pureline.com

×