1 of 83

## More Related Content

### What's hot(20)

The Basics of Statistics for Data Science By Statisticians
The Basics of Statistics for Data Science By Statisticians

Research Methology -Factor Analyses
Research Methology -Factor Analyses

Introduction to principal component analysis (pca)
Introduction to principal component analysis (pca)

Path analysis
Path analysis

Introduction to Statistics
Introduction to Statistics

PCA (Principal component analysis)
PCA (Principal component analysis)

Exploratory data analysis
Exploratory data analysis

1.2 types of data
1.2 types of data

Sampling Variability And The Precision Of A Sample by Dr Sindhu Almas copy.pptx
Sampling Variability And The Precision Of A Sample by Dr Sindhu Almas copy.pptx

Regression analysis pdf
Regression analysis pdf

Classification and regression trees (cart)
Classification and regression trees (cart)

Decision tree
Decision tree

Generalized linear model
Generalized linear model

What is bias in statistics its definition and types
What is bias in statistics its definition and types

10 information bias
10 information bias

Part 1 Survival Analysis
Part 1 Survival Analysis

Bayesian statistics
Bayesian statistics

Repeated Measures t-test
Repeated Measures t-test

Logistic regression
Logistic regression

statistic
statistic

## Viewers also liked

S5 w1 hypothesis testing & t test
S5 w1 hypothesis testing & t test
Rachel Chung

Hypothesis
Hypothesis
17somya

Statistical Analysis for Educational Outcomes Measurement in CME
Statistical Analysis for Educational Outcomes Measurement in CME
D. Warnick Consulting

### Viewers also liked(20)

Command Terms in IB Biology
Command Terms in IB Biology

Cell membrane and cell membrane transport
Cell membrane and cell membrane transport

Correlation
Correlation

IB Biology 1.6 & 1.1 Slides: Mitosis & Stem Cells
IB Biology 1.6 & 1.1 Slides: Mitosis & Stem Cells

Prokaryotes - introduction IB Biology
Prokaryotes - introduction IB Biology

Cell Theory
Cell Theory

Moodle/Turnitin GradeMark for Feedback to Students
Moodle/Turnitin GradeMark for Feedback to Students

IB Biology 9.1 transport in the xylem of plants
IB Biology 9.1 transport in the xylem of plants

Reproduction (Core)
Reproduction (Core)

Anesthesia powerpoint
Anesthesia powerpoint

S5 w1 hypothesis testing & t test
S5 w1 hypothesis testing & t test

Choosing the right statistics
Choosing the right statistics

Hypothesis testing
Hypothesis testing

Development of resistant Staphylococcus aureus over time
Development of resistant Staphylococcus aureus over time

Hypothesis
Hypothesis

Statistical Analysis for Educational Outcomes Measurement in CME
Statistical Analysis for Educational Outcomes Measurement in CME

Measurement and uncertainty
Measurement and uncertainty

Data Analysis: Descriptive Statistics
Data Analysis: Descriptive Statistics

Measurement and uncertainties
Measurement and uncertainties

Measurement uncertainty
Measurement uncertainty

### More from Stephen Taylor(20)

How International Is Our School? MA Dissertation
How International Is Our School? MA Dissertation

Trivium 21C Review in International School Magazine
Trivium 21C Review in International School Magazine

A Pragmatic Approach to Inquiry
A Pragmatic Approach to Inquiry

MYP: Mind The Gap [MA Assignment]
MYP: Mind The Gap [MA Assignment]

Protein synthesis Running Dictation
Protein synthesis Running Dictation

Cells Super Crossword
Cells Super Crossword

How International Is You School?
How International Is You School?

Human Subject Consent Form
Human Subject Consent Form

A3 special issues in nutrition
A3 special issues in nutrition

Current Electricity: "I used to think... Now I think."
Current Electricity: "I used to think... Now I think."

Chemistry Lab Manual
Chemistry Lab Manual

Reactions & Formulas Lab Sequence
Reactions & Formulas Lab Sequence

Red Bull Stratos: Freefall Physics
Red Bull Stratos: Freefall Physics

Curriculum Studies Assignment
Curriculum Studies Assignment

01 Nature of Biology
01 Nature of Biology

One Direction Do Physics
One Direction Do Physics

Measurement & Error
Measurement & Error

Chemistry Lab Manual 2012-13
Chemistry Lab Manual 2012-13

Science Show 2012
Science Show 2012

Describing Motion 2012
Describing Motion 2012

Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...

Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes Guàrdia

ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...

An overview of the various scriptures in Hinduism
An overview of the various scriptures in Hinduism

An Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge App

Trauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical Principles

Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...

Andreas Schleicher presents at the launch of What does child empowerment mean...
Andreas Schleicher presents at the launch of What does child empowerment mean...

Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes Guàrdia

FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf

MOOD STABLIZERS DRUGS.pptx
MOOD STABLIZERS DRUGS.pptx

UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024

Stl Algorithms in C++ jjjjjjjjjjjjjjjjjj
Stl Algorithms in C++ jjjjjjjjjjjjjjjjjj

male presentation...pdf.................
male presentation...pdf.................

TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT TOÁN 2024 - TỪ CÁC TRƯỜNG, TRƯỜNG...

Mattingly "AI and Prompt Design: LLMs with NER"
Mattingly "AI and Prompt Design: LLMs with NER"

Major project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategies

How to Send Pro Forma Invoice to Your Customers in Odoo 17
How to Send Pro Forma Invoice to Your Customers in Odoo 17

When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...

Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx

### Statistical Analysis

• 1. Statistical Analysis IB Diploma Biology Stephen Taylor Image: 'Hummingbird Checks Out Flower' http://www.flickr.com/photos/25659032@N07/7200193254 Found on flickrcc .net
• 2. Assessment Statements Obj. 1.1.1 State that error bars are a graphical representation of the variability of data.  Range and standard deviation show the variability/ spread in the data  95% Confidence Interval error bars suggest significance of difference where there is no overlap. 1 1.1.2 Calculate the mean and standard deviation of a set of values  Using Excel (Formula =STDEV(rawdata))  Using your calculator 2 1.1.3 State that the term standard deviation (s) is used to summarize the spread of values around the mean, and that 68% of all data fall within (±) 1 standard deviation of the mean. 1 1.1.4 Explain how the standard deviation is useful for comparing the means and the spread of data between two or more samples.  A greater standard deviation shows a greater variability of data around the mean.  This can be used to infer reliability in methods or results. 3 1.1.5 Deduce the significance of the difference between two sets of data using calculated values for t and the appropriate tables.  Using t-values, t-tables and critical values  Directly calculating P values using Excel in lab reports. 3 1.1.6 Explain that the existence of a correlation does not establish that there is a causal relationship between two variables. 3 Assessment statements from: Online IB Biology Subject GuideCommand terms: http://i-biology.net/ibdpbio/command-terms/
• 3. MrT’s Excel Statbook has guidance and ‘live’ examples of tables, graphs and statistical tests. http://i-biology.net/ict-in-ib-biology/spreadsheets-graphing/statexcel/
• 4. “Why is this Biology?” Variation in populations. Variability in results. affects Confidence in conclusions. The key methodology in Biology is hypothesis testing through experimentation. Carefully-designed and controlled experiments and surveys give us quantitative (numeric) data that can be compared. We can use the data collected to test our hypothesis and form explanations of the processes involved… but only if we can be confident in our results. We therefore need to be able to evaluate the reliability of a set of data and the significance of any differences we have found in the data. Image: 'Transverse section of part of a stem of a Dead-nettle (Lamium sp.) showing+a+vascular+bundle+and+part+of+the+cortex' http://www.flickr.com/photos/71183136@N08/6959590092 Found on flickrcc.net
• 5. “Which medicine should I prescribe?” Image from: http://www.msf.org/international-activity-report-2010-sierra-leone Donate to Medecins Sans Friontiers through Biology4Good: http://i-biology.net/about/biology4good/
• 6. “Which medicine should I prescribe?” Image from: http://www.msf.org/international-activity-report-2010-sierra-leone Donate to Medecins Sans Friontiers through Biology4Good: http://i-biology.net/about/biology4good/ Generic drugs are out-of-patent, and are much cheaper than the proprietary (brand-name) equivalents. Doctors need to balance needs with available resources. Which would you choose?
• 7. “Which medicine should I prescribe?” Image from: http://www.msf.org/international-activity-report-2010-sierra-leone Donate to Medecins Sans Friontiers through Biology4Good: http://i-biology.net/about/biology4good/ Means (averages) in Biology are almost never good enough. Biological systems (and our results) show variability. Which would you choose now?
• 8. Hummingbirds are nectarivores (herbivores that feed on the nectar of some species of flower). In return for food, they pollinate the flower. This is an example of mutualism – benefit for all. As a result of natural selection, hummingbird bills have evolved. Birds with a bill best suited to their preferred food source have the greater chance of survival. Photo: Archilochus colubris, from wikimedia commons, by Dick Daniels.
• 9. Researchers studying comparative anatomy collect data on bill-length in two species of hummingbirds: Archilochus colubris (red-throated hummingbird) and Cynanthus latirostris (broadbilled hummingbird). To do this, they need to collect sufficient relevant, reliable data so they can test the Null hypothesis (H0) that: “there is no significant difference in bill length between the two species.” Photo: Archilochus colubris (male), wikimedia commons, by Joe Schneid
• 10. The sample size must be large enough to provide sufficient reliable data and for us to carry out relevant statistical tests for significance. We must also be mindful of uncertainty in our measuring tools and error in our results. Photo: Broadbilled hummingbird (wikimedia commons).
• 11.
• 12. The mean is a measure of the central tendency of a set of data. Table 1: Raw measurements of bill length in A. colubris and C. latirostris. Bill length (±0.1mm) n A. colubris C. latirostris 1 13.0 17.0 2 14.0 18.0 3 15.0 18.0 4 15.0 18.0 5 15.0 19.0 6 16.0 19.0 7 16.0 19.0 8 18.0 20.0 9 18.0 20.0 10 19.0 20.0 Mean s Calculate the mean using: • Your calculator (sum of values / n) • Excel =AVERAGE(highlight raw data) n = sample size. The bigger the better. In this case n=10 for each group. All values should be centred in the cell, with decimal places consistent with the measuring tool uncertainty.
• 13. The mean is a measure of the central tendency of a set of data. Table 1: Raw measurements of bill length in A. colubris and C. latirostris. Bill length (±0.1mm) n A. colubris C. latirostris 1 13.0 17.0 2 14.0 18.0 3 15.0 18.0 4 15.0 18.0 5 15.0 19.0 6 16.0 19.0 7 16.0 19.0 8 18.0 20.0 9 18.0 20.0 10 19.0 20.0 Mean 15.9 18.8 s Raw data and the mean need to have consistent decimal places (in line with uncertainty of the measuring tool) Uncertainties must be included. Descriptive table title and number.
• 14.
• 16.
• 17.
• 18. A. colubris, 15. 9mm C. latirostris, 1 8.8mm 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 MeanBilllength(±0.1mm) Species of hummingbird Graph 1: Comparing mean bill lengths in two hummingbird species, A. colubris and C. latirostris. Descriptive title, with graph number. Labeled point Y-axis clearly labeled, with uncertainty. Make sure that the y-axis begins at zero. x-axis labeled
• 19. A. colubris, 15. 9mm C. latirostris, 1 8.8mm 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 MeanBilllength(±0.1mm) Species of hummingbird Graph 1: Comparing mean bill lengths in two hummingbird species, A. colubris and C. latirostris. From the means alone you might conclude that C. latirostris has a longer bill than A. colubris. But the mean only tells part of the story.
• 20.
• 21.
• 22.
• 23.
• 24.
• 25.
• 26.
• 27.
• 28.
• 29.
• 30.
• 33.
• 34.
• 35. Standard deviation is a measure of the spread of most of the data. Table 1: Raw measurements of bill length in A. colubris and C. latirostris. Bill length (±0.1mm) n A. colubris C. latirostris 1 13.0 17.0 2 14.0 18.0 3 15.0 18.0 4 15.0 18.0 5 15.0 19.0 6 16.0 19.0 7 16.0 19.0 8 18.0 20.0 9 18.0 20.0 10 19.0 20.0 Mean 15.9 18.8 s 1.91 1.03 Standard deviation can have one more decimal place.=STDEV (highlight RAW data). Which of the two sets of data has: a. The longest mean bill length? a. The greatest variability in the data?
• 36. Standard deviation is a measure of the spread of most of the data. Table 1: Raw measurements of bill length in A. colubris and C. latirostris. Bill length (±0.1mm) n A. colubris C. latirostris 1 13.0 17.0 2 14.0 18.0 3 15.0 18.0 4 15.0 18.0 5 15.0 19.0 6 16.0 19.0 7 16.0 19.0 8 18.0 20.0 9 18.0 20.0 10 19.0 20.0 Mean 15.9 18.8 s 1.91 1.03 Standard deviation can have one more decimal place.=STDEV (highlight RAW data). Which of the two sets of data has: a. The longest mean bill length? a. The greatest variability in the data? C. latirostris A. colubris
• 37. Standard deviation is a measure of the spread of most of the data. Error bars are a graphical representation of the variability of data. Which of the two sets of data has: a. The highest mean? a. The greatest variability in the data? A B Error bars could represent standard deviation, range or confidence intervals.
• 38. Put the error bars for standard deviation on our graph.
• 39. Put the error bars for standard deviation on our graph.
• 40. Put the error bars for standard deviation on our graph. Delete the horizontal error bars
• 41. A. colubris, 15.9 mm C. latirostris, 18 .8mm 0.0 5.0 10.0 15.0 20.0 MeanBilllength(±0.1mm) Species of hummingbird Graph 1: Comparing mean bill lengths in two hummingbird species, A. colubris and C. latirostris. (error bars = standard deviation) Title is adjusted to show the source of the error bars. This is very important. You can see the clear difference in the size of the error bars. Variability has been visualised. The error bars overlap somewhat. What does this mean?
• 42. The overlap of a set of error bars gives a clue as to the significance of the difference between two sets of data. Large overlap No overlap Lots of shared data points within each data set. Results are not likely to be significantly different from each other. Any difference is most likely due to chance. No (or very few) shared data points within each data set. Results are more likely to be significantly different from each other. The difference is more likely to be ‘real’.
• 43.
• 44.
• 45.
• 46. A. colubris, 15. 9mm (n=10) C. latirostris, 1 8.8mm (n=10) -3.0 2.0 7.0 12.0 17.0 22.0 MeanBilllength(±0.1mm) Species of hummingbird Graph 1: Comparing mean bill lengths in two hummingbird species, A. colubris and C. latirostris.(error bars = standard deviation) Our results show a very small overlap between the two sets of data. So how do we know if the difference is significant or not? We need to use a statistical test. The t-test is a statistical test that helps us determine the significance of the difference between the means of two sets of data.
• 47.
• 48. The Null Hypothesis (H0): “There is no significant difference.” This is the ‘default’ hypothesis that we always test. In our conclusion, we either accept the null hypothesis or reject it. A t-test can be used to test whether the difference between two means is significant. • If we accept H0, then the means are not significantly different. • If we reject H0, then the means are significantly different. Remember: • We are never ‘trying’ to get a difference. We design carefully-controlled experiments and then analyse the results using statistical analysis.
• 49. P value = 0.1 0.05 0.02 0.01 confidence 90% 95% 98% 99% degreesoffreedom 1 6.31 12.71 31.82 63.66 2 2.92 4.30 6.96 9.92 3 2.35 3.18 4.54 5.84 4 2.13 2.78 3.75 4.60 5 2.02 2.57 3.37 4.03 6 1.94 2.45 3.14 3.71 7 1.89 2.36 3.00 3.50 8 1.86 2.31 2.90 3.36 9 1.83 2.26 2.82 3.25 10 1.81 2.23 2.76 3.17 We can calculate the value of ‘t’ for a given set of data and compare it to critical values that depend on the size of our sample and the level of confidence we need. Example two-tailed t-table. “Degrees of Freedom (df)” is the total sample size minus two. What happens to the value of P as the confidence in the results increases? What happens to the critical value as the confidence level increases? “critical values”
• 50. P value = 0.1 0.05 0.02 0.01 confidence 90% 95% 98% 99% degreesoffreedom 1 6.31 12.71 31.82 63.66 2 2.92 4.30 6.96 9.92 3 2.35 3.18 4.54 5.84 4 2.13 2.78 3.75 4.60 5 2.02 2.57 3.37 4.03 6 1.94 2.45 3.14 3.71 7 1.89 2.36 3.00 3.50 8 1.86 2.31 2.90 3.36 9 1.83 2.26 2.82 3.25 10 1.81 2.23 2.76 3.17 We can calculate the value of ‘t’ for a given set of data and compare it to critical values that depend on the size of our sample and the level of confidence we need. Example two-tailed t-table. “Degrees of Freedom (df)” is the total sample size minus two*. We usually use P<0.05 (95% confidence) in Biology, as our data can be highly variable *Simple explanation: we are working in two directions – within each population and across populations. “critical values”
• 51. 2-tailed t-table source: http://www.medcalc.org/manual/t-distribution.php
• 52. t was calculated as 2.15 (this is done for you) t cv 2.15 If t < cv, accept H0 (there is no significant difference) If t > cv, reject H0 (there is a significant difference) 2-tailed t-table source: http://www.medcalc.org/manual/t-distribution.php
• 53. 0.05 t was calculated as 2.15 (this is done for you) t cv 2.15 If t < cv, accept H0 (there is no significant difference) If t > cv, reject H0 (there is a significant difference) 2-tailed t-table source: http://www.medcalc.org/manual/t-distribution.php
• 54. 2.069 0.05 t was calculated as 2.15 (this is done for you) t cv 2.15 > 2.069 If t < cv, accept H0 (there is no significant difference) If t > cv, reject H0 (there is a significant difference) 2-tailed t-table source: http://www.medcalc.org/manual/t-distribution.php
• 55. 2.069 0.05 t was calculated as 2.15 (this is done for you) t cv 2.15 > 2.069 If t < cv, accept H0 (there is no significant difference) If t > cv, reject H0 (there is a significant difference) Conclusion: “There is a significant difference in the wing spans of the two populations of birds.” 2-tailed t-table source: http://www.medcalc.org/manual/t-distribution.php
• 56. 2-tailed t-table source: http://www.medcalc.org/manual/t-distribution.php
• 57. 2-tailed t-table source: http://www.medcalc.org/manual/t-distribution.php
• 58. 2.0452.045 2-tailed t-table source: http://www.medcalc.org/manual/t-distribution.php “There is no significant difference in the size of shells between north-side and south-side snail populations.”
• 59. 2-tailed t-table source: http://www.medcalc.org/manual/t-distribution.php
• 60. 2.086 2.086 2-tailed t-table source: http://www.medcalc.org/manual/t-distribution.php “There is a significant difference in the resting heart rates between the two groups of swimmers.”
• 61. Excel can jump straight to a value of P for our results. One function (=ttest) compares both sets of data. As it calculates P directly (the probability that the difference is due to chance), we can determine significance directly. In this case, P=0.00051 This is much smaller than 0.005, so we are confident that we can: reject H0. The difference is unlikely to be due to chance. Conclusion: There is a significant difference in bill length between A. colubris and C. latirostris.
• 62.
• 63. Two tails: we assume data are normally distributed, with two ‘tails’ moving away from mean. Type 2 (unpaired): we are comparing one whole population with the other whole population. (Type 1 pairs the results of each individual in set A with the same individual in set B).
• 64.
• 65. 95% Confidence Intervals can also be plotted as error bars. These give a clearer indication of the significance of a result: • Where there is overlap, there is not a significant difference • Where there is no overlap, there is a significant difference. • If the overlap (or difference) is small, a t-test should still be carried out. no overlap =CONFIDENCE.NORM(0.05,stdev,samplesize) e.g =CONFIDENCE.NORM(0.05,C15,10)
• 66. Error bars can have very different purposes. Standard deviation • You really need to know this • Look for relative size of bars • Used to indicate spread of most of the data around the mean • Can imply reliability of data 95% Confidence Intervals • Adds value to labs where we are looking for differences. • Look for overlap, not size • Overlap  no sig. diff. • No overlap  sig. dif.
• 67. Interesting Study: Do “Better” Lecturers Cause More Learning? Find out more here: http://priceonomics.com/is-this-why-ted-talks-seem-so-convincing/ Students watched a one-minute video of a lecture. In one video, the lecturer was fluent and engaging. In the other video, the lecturer was less fluent. They predicted how much they would learn on the topic (genetics) and this was compared to their actual score. (Error bars = standard deviation). n=21 n=21
• 68. Interesting Study: Do “Better” Lecturers Cause More Learning? Find out more here: http://priceonomics.com/is-this-why-ted-talks-seem-so-convincing/ Students watched a one-minute video of a lecture. In one video, the lecturer was fluent and engaging. In the other video, the lecturer was less fluent. They predicted how much they would learn on the topic (genetics) and this was compared to their actual score. (Error bars = standard deviation). Is there a significant difference in the actual learning? n=21 n=21
• 69. Interesting Study: Do “Better” Lecturers Cause More Learning? Find out more here: http://priceonomics.com/is-this-why-ted-talks-seem-so-convincing/ Evaluate the study: 1. What do the error bars (standard deviation) tell us about reliability? 2. How valid is the study in terms of sufficiency of data (population sizes (n))? n=21 n=21
• 70. Dog fleas jump higher that cat fleas, winner of the IgNobel prize for Biology, 2008. http://www.youtube.com/watch?v=fJEZg4QN760
• 71. P value = 0.1 0.05 0.02 0.01 0.005 confidence 90% 95% 98% 99% 99.50% degreesoffreedom 1 6.31 12.71 31.82 63.66 127.34 2 2.92 4.30 6.96 9.92 14.09 3 2.35 3.18 4.54 5.84 7.45 4 2.13 2.78 3.75 4.60 5.60 5 2.02 2.57 3.37 4.03 4.77 6 1.94 2.45 3.14 3.71 4.32 7 1.89 2.36 3.00 3.50 4.03 8 1.86 2.31 2.90 3.36 3.83 9 1.83 2.26 2.82 3.25 3.69 10 1.81 2.23 2.76 3.17 3.58 degreesoffreedom 11 1.80 2.20 2.72 3.11 3.50 12 1.78 2.18 2.68 3.05 3.43 13 1.77 2.16 2.65 3.01 3.37 14 1.76 2.14 2.62 2.98 3.33 15 1.75 2.13 2.60 2.95 3.29 16 1.75 2.12 2.58 2.92 3.25 17 1.74 2.11 2.57 2.90 3.22 18 1.73 2.10 2.55 2.88 3.20 19 1.73 2.09 2.54 2.86 3.17 20 1.72 2.09 2.53 2.85 3.15 degreesoffreedom 21 1.72 2.08 2.52 2.83 3.14 22 1.72 2.07 2.51 2.82 3.12 23 1.71 2.07 2.50 2.81 3.10 24 1.71 2.06 2.49 2.80 3.09 25 1.71 2.06 2.49 2.79 3.08 26 1.71 2.06 2.48 2.78 3.07 27 1.70 2.05 2.47 2.77 3.06 28 1.70 2.05 2.47 2.76 3.05 29 1.70 2.05 2.46 2.76 3.04 30 1.70 2.04 2.46 2.75 3.03 degreesoffreedom 31 1.70 2.04 2.45 2.74 3.02 32 1.69 2.04 2.45 2.74 3.02 33 1.69 2.03 2.44 2.73 3.01 34 1.69 2.03 2.44 2.73 3.00 35 1.69 2.03 2.44 2.72 3.00 36 1.69 2.03 2.43 2.72 2.99 37 1.69 2.03 2.43 2.72 2.99 38 1.69 2.02 2.43 2.71 2.98 39 1.68 2.02 2.43 2.71 2.98 40 1.68 2.02 2.42 2.70 2.97
• 72. Cartoon from: http://www.xkcd.com/552/ Correlation does not imply causation, but it does waggle its eyebrows suggestively and gesture furtively while mouthing "look over there."
• 73.
• 74.
• 75.
• 76. From MrT’s Excel Statbook.
• 77. http://diabetes-obesity.findthedata.org/b/240/Correlations-between-diabetes-obesity-and-physical-activity Interpreting Graphs: See – Think – Wonder See: What is factual about the graph? • What are the axes? • What is being plotted • What values are present? Think: How is the graph interpreted? • What relationship is present? • Is cause implied? • What explanations are possible and what explanations are not possible? Wonder: Questions about the graph. • What do you need to know more about? See – Think - Wonder Visible Thinking Routine
• 78. http://diabetes-obesity.findthedata.org/b/240/Correlations-between-diabetes-obesity-and-physical-activity Diabetes and obesity are ‘risk factors’ of each other. There is a strong correlation between them, but does this mean one causes the other?
• 79. Correlation does not imply causality. Pirates vs global warming, from http://en.wikipedia.org/wiki/Flying_Spaghetti_Monster#Pirates_and_global_warming
• 80. Correlation does not imply causality. Pirates vs global warming, from http://en.wikipedia.org/wiki/Flying_Spaghetti_Monster#Pirates_and_global_warming Where correlations exist, we must then design solid scientific experiments to determine the cause of the relationship. Sometimes a correlation exist because of confounding variables – conditions that the correlated variables have in common but that do not directly affect each other. To be able to determine causality through experimentation we need: • One clearly identified independent variable • Carefully measured dependent variable(s) that can be attributed to change in the independent variable • Strict control of all other variables that might have a measurable impact on the dependent variable. We need: sufficient relevant, repeatable and statistically significant data. Some known causal relationships: • Atmospheric CO2 concentrations and global warming • Atmospheric CO2 concentrations and the rate of photosynthesis • Temperature and enzyme activity
• 81.
• 82. Flamenco Dancer, by Steve Corey http://www.flickr.com/photos/22016744@N06/7952552148
Current LanguageEnglish
Español
Portugues
Français
Deutsche