Successfully reported this slideshow.

Amiinoaciidos ii proteiinas!

10,911 views

Published on

Amiinoaciidos ii proteiinas!

  1. 1. AMINOÁCIDOS Estos compuestos, al unirse en cantidades y secuencias diferentes, forman los péptidos y las proteínas, las cuales son fundamentales en la estructura de los seres vivientes.
  2. 2. <ul><li>La estructura general de un aminoácido se establece por la presencia de un carbono central alfa unido a: un grupo carboxilo (rojo en la figura), un grupo amino (verde), un hidrógeno (en negro) y la cadena lateral (azul): </li></ul>
  3. 3. Estructura general de los a- Aminoácidos Valina Aminoácido generalizado, que forma un zwitteriona un pH neutro La Valina, un a -aminoácido representativo, presenta un grupo amino en el carbono alfa, así como una cadena lateral ( R ) que le proporciona propiedades únicas. Los aminoácidos son ácidos carboxílicos, con uno o más grupos amino unidos covalentemente. Protonado Disociado
  4. 4. Enlaces alrededor del C “tetraedricos”. Molécula asimétrica con átomo quiral (4 elementos distintos). Las bolas y los bastones representan los ángulos de enlace y la disposición tridimensional de los átomos. ESTEREOQUÍMICA DE LOS AMINOÁCIDOS
  5. 5. ESTEREOQUÍMICA DE LOS AMINOÁCIDOS Existen dos estereoisomeros distinguibles: imágenes especulares que no se pueden superponer una de la otra (enantiomeros o Isomeros Opticos). Debido a que sus soluciones rotan el plano de la luz polarizada en direcciones opuestas. 1. A.a L “Constituyentes de las proteínas” 2. A.a D “Función Biológica”
  6. 6. ALGUNOS AMINOÁCIDOS BIOLÓGICAMENTE IMPORTANTES QUE NO SE HALLAN EN LAS PROTEÍNAS
  7. 7. Isoleucina: Es uno de los veinte aminoácidos constituyentes de las proteínas con una cadena ramificada de hidrocarburos con cuatro átomos de carbono como grupo lateral. Pertenece por tanto al grupo de aminoácidos con cadenas laterales no polares (hidrófobos), y participa como promedio en 4,6 por ciento (en relación con todos los aminoácidos) de la composición de las proteínas. Al igual que la treonina, la isoleucina —a diferencia de los demás aminoácidos— posee dos carbonos asimétricos. Su biosíntesis tiene lugar a partir del piruvato (el producto final de la glicolisis), como ocurre con la valina y la leucina, los otros dos aminoácidos con cadenas laterales no polares ramificadas. No puede ser sintetizada por los mamíferos, por lo que es uno de los aminoácidos esenciales. Función: Junto con la Leucina y la hormona del Crecimiento intervienen en la formación y reparación del tejido muscular. AMINOÁCIDOS MÁS ESENCIALES
  8. 8. Leucina: Función: Junto con la Isoleucina y la hormona del Crecimiento (HGH) interviene con la formación y reparación del tejido muscular. Lisina: Función: Es uno de los más importantes aminoácidos porque, en asociación con varios aminoácidos más, interviene en diversas funciones, incluyendo el crecimiento, reparación de tejidos, anticuerpos del sistema inmunológico y síntesis de hormonas. Metionina: Función: Colabora en la síntesis de proteínas y constituye el principal limitante en las proteínas de la dieta. El aminoácido limitante determina el porcentaje de alimento que va a utilizarse a nivel celular.
  9. 9. Fenilalanina: Función: Interviene en la producción del Colágeno, fundamentalmente en la estructura de la piel y el tejido conectivo, y también en la formación de diversas neurohormonas . Triptófano: Función: Está inplicado en el crecimiento y en la producción hormonal, especialmente en la función de las glándulas de secreción adrenal. También interviene en la síntesis de la serotonina, neurohormona involucrada en la relajación y el sueño. Treonina: Función: Junto con la con la Metionina y el ácido Aspártico ayuda al hígado en sus funciones generales de desintoxicación.
  10. 10. Valina: Función: Estimula el crecimiento y reparación de los tejidos, el mantenimiento de diversos sistemas y balance de nitrógeno. AMINOÁCIDOS NO ESENCIALES Alanina: Función: Interviene en el metabolismo de la glucosa. La glucosa es un carbohidrato simple que el organismo utiliza como fuente de energía.
  11. 11. Arginina: Función: Está implicada en la conservación del equilibrio de nitrógeno y de dióxido de carbono. También tiene una gran importancia en la producción de la hormona del Crecimiento, directamente involucrada en el crecimiento de los tejidos y músculos y en el mantenimiento y reparación del sistema inmunologico Asparagina: Función: Interviene específicamente en los procesos metabólicos del Sistema Nervioso Central (SNC). Aspártico: Función: Es muy importante para la desintoxicación del hígado y su correcto funcionamiento. El ácido aspártico se combina con otros aminoácidos formando moléculas capaces de absorber toxinas del torrente sanguíneo.
  12. 12. Citrulina: Función: Interviene específicamente en la eliminación del amoníaco. Cistina: Función: También interviene en la desintoxicación, en combinación con los aminoácidos anteriores. La cistina es muy importante en la síntesis de la insulina y también en las reacciones de ciertas moléculas a la insulina. Cisteína: Función: Junto con la cistina, la cisteína está implicada en la desintoxicación, principalmente como antagonista de los radicales libres. También contribuye a mantener la salud de los cabellos por su elevado contenido de azufre.
  13. 13. Glutamina: Función: Nutriente cerebral e interviene específicamente en la utilización de la glucosa por el cerebro. Glutamínico: Función: Tiene gran importancia en el funcionamiento del Sistema Nervioso Central y actúa como estimulante del sistema inmunologico. Glicina: Función: En combinación con muchos otros aminoácidos, es un componente de numerosos tejidos del organismo .
  14. 14. Histidina: Función: En combinación con la hormona de crecimiento (HGH) y algunos aminoácidos asociados, contribuyen al crecimiento y reparación de los tejidos con un papel específicamente relacionado con el sistema cardio-vascular. Serina: Función: Junto con algunos aminoácidos mencionados, interviene en la desintoxicación del organismo, crecimiento muscular, y metabolismo de grasas y ácidos grasos. Taurina: Función: Estimula la hormona del Crecimiento (HGH) en asociación con otros aminoácidos, está implicada en la regulación de la presión sanguínea, fortalece el músculo cardiaco y vigoriza el sistema nervioso.
  15. 15. Tirosina: Función: Es un neurotrasmisor directo y puede ser muy eficaz en el tratamiento de la depresión, en combinación con otros aminoácidos necesarios. Ornitina: Función: Es específico para la hormona del Crecimiento (HGH) en asociación con otros aminoácidos ya mencionados. Al combinarse con la arginina y con carnitina (que se sintetiza en el organismo, la ornitina tiene una importante función en el metabolismo del exceso de grasa corporal. Prolina: Función: Está involucrada también en la producción de colágeno y tiene gran importancia en la reparación y mantenimiento del músculo y huesos.
  16. 16. AMINOÁCIDOS CON ACTIVIDAD BIOLÓGICA Los a.a o sus derivados actúan como mensajeros químicos: Glicina, Glutamina (GABA), Triptofano (5- HT y Melatonina). Los a.a son derivados de moléculas que tiene nitrógeno Bases nitrogenadas de los ácidos nucleicos Intermediarios metabólicos (formación de la urea) Glicina, Citrulina y Ornitina
  17. 17. <ul><li>Los 20 aminoácidos comunes que forman parte de las proteínas, se clasifican, dependiendo de las propiedades de su grupo R, en los siguientes 4 grupos: </li></ul><ul><li>Aminoácidos con grupo R no polar. (Grupo R hidrófobo). </li></ul><ul><li>2. Aminoácidos con grupo R polar, sin carga. (Grupo R hidrofílico). </li></ul><ul><li>3. Aminoácidos con grupo R cargado negativamente. (Aminoácidos ácidos). </li></ul><ul><li>4. Aminoácidos con grupo R cargado positivamente. (Aminoácidos básicos). </li></ul>
  18. 18. AMINOÁCIDOS QUE SE ENCUENTRAN EN LAS PROTEÍNAS
  19. 19. AMINOÁCIDOS QUE SE ENCUENTRAN EN LAS PROTEÍNAS Apolares neutros; dado su carácter hidrofobico estos a.a participan en el mantenimiento de la estructura tridimensional de la proteínas. Cadena R hidrocarbonadas dos tipos: Aromáticos (hidrocarburos, cíclicos- instaurados). Absorción de la luz. Alifaticos o alcanos; (no aromaticos, metanos). OH ; parcialmente polares y S : enlaces disulfuro (fig) Polares neutros: grupos funcionales capaces de formar enlaces de H. (OH)(fig). Aminoácidos ácidos : conservan sus cadenas laterales un grupo carboxilato -. Aminoácidos básicos : a un pH fisiológico llevan una carga + por lo que forman enlaces ionicos con los a.a ácidos. Neutros: las cadenas laterales no llevan cargas positivas y negativas
  20. 20. FORMACIÓN DE ENLACE DISULFURO Componentes importantes de muchas enzimas “actividad biológica”
  21. 21. Derivados de los aminoácidos ácidos
  22. 22. Hidrólisis de Arginina y catalizada por la enzima arginasa FORMACIÓN DE LA UREA (Lisina a.a homologo)
  23. 23. LOS AMINOÁCIDOS SON ANFÓLITOS Un anfótero es un compuesto que, dentro de su misma estructura, tiene grupos ácidos y básicos y a la molécula que tiene esta propiedad se le dice que es un anfólito. Los aminoácidos son anfólitos; el grupo carboxilo es un ácido, es decir, donador de protones y el amino es una base, debido a que acepta protones. Debido a que los aminoácidos se comportan al mismo tiempo como ácido y como base, al pH de 7.4 se encuentran como se presentan:
  24. 24. Un aminoácido puede existir en varias formas iónicas, dependiendo del pH del medio en donde se encuentre disuelto. Esta propiedad se describe mejor utilizando la ecuación de Henderson – Hasselbach. Los aminoácidos tienen al menos dos grupos disociables, el amino y el carboxilo; pueden tener mas, si el grupo R tiene a su vez grupos que se puedan ionizar. Para cada uno de estos grupos existe un pK, el del carboxilo se le llamará PK PKCOOH y PK NH2 al del amiamino.
  25. 25. Valores de pKCOOH, pKNH2 y pKR de algunos aminoácidos .
  26. 27. PÉPTIDOS Y ENLACES PEPTÍDICOS Dipétidos Oliopéptidos (Tetrapéptido) Polipéptido Todas las proteínas son polipéptidos de hay la importancia del enlace peptídico
  27. 28. ENLACE PEPTÍDICO Grupo Carboxilo terminal o C-terminal Grupo amino terminal N-terminal Grupos ionizables en las cadenas laterales “ Polianfolitos”
  28. 29. ESTRUCTURA DEL ENLACE PEPTIDICO Puede considerarse un híbrido de dos formas Son enlaces paralelos C-O; N-H, es decir no se produce un giro alrededor del enlace C-N. Incluso cuando son coplanares el grupo de atomos alrededor del enlace peptidico puede darce en dos formas; Cis y Trans.
  29. 30. CADENA POLIPETÍDICA El enlace peptidico es casi planar y esta favorecido por la forma trans. La configuración Cis puede interferir con los grupos R sobre los C adyacentes, por lo tanto la conformación trans es mas estable.
  30. 31. ESTABILIDAD Y FORMACIÓN DEL ENLACE PEPTIDICO Inestabilidad termodinámica: Hidrólisis del enlace petidico “reacción favorecida” reacción lenta. Enzimas proteoliticas o proteasas: fragmentan de manera especifica sitios de uniones peptidicas. Acoplamiento de la reacción sintética con la hidrólisis de ATP
  31. 33. Cada proteína está formada por bloques de construcción denominados aminoácidos. Los a.a son moléculas anfoteras; es decir, pueden actuar como ácidos o bases. Los a.a poseen varias funciones biológicas importantes, además de su función primaria como componentes de las proteínas. Las a.a se clasifican de acuerdo con su capacidad para interaccionar con el agua. Utilizando este criterio pueden distinguirse cuatro clases: apolares, polares, ácidos y bases. La mayoría de los a a.a contienen un C asimétrico y en consecuencia tienen enantiomeros L y D. En las proteínas solo se encuentran enantiómeros L. La variedad de las cadenas laterales en los a.a permiten que las proteínas gocen de una gran versatilidad en cuanto a estructura. Todas las proteínas son polipéptidos Los polipéptidos son polímeros formados por a.a unidos por enlaces peptidicos. El orden de los a.a en el Polipéptido se denomina secuencia de a.a. Los puentes disulfuro, formados por la oxidación de cisteína, son elementos estructuras en polipéptidos y proteínas. El enlace peptidico es casi planar y esta favorecido por la forma trans. El enlace peptidico es metaestable. Las proteínas se hidrolizan en solución acuosa cuando esta presente un catalizador.
  32. 34. PROTEÍNAS
  33. 35. DEL GEN A LA PRTEÍNA El código genético especifica los tripletes de RNA que corresponden a cacada residuo de aminoácido
  34. 37. Estructura primaria de una proteína
  35. 38. La enzima aminoacil-tRNA sintetasa reconoce a un aminoácido concreto a al RNAt que transporta el anticodon correspondiente. La enzima cataliza la formación de un aminoacil RNAt, acompañada por hidrólisis de una ATP a AMP y Pirofosfato.
  36. 39. COMPOSICIÓN QUÍMICA Y CLASIFICACIÓN DE LAS PROTEÍNAS. Las proteínas son los materiales que desempeñan un mayor numero de funciones en las células de todos los seres vivos. Por un lado, forman parte de la estructura básica de los tejidos (músculos, tendones, piel, uñas, etc.) y, por otro, desempeñan funciones metabólicas y reguladoras (asimilación de nutrientes, transporte de oxígeno y de grasas en la sangre, inactivación de materiales tóxicos o peligrosos, etc.). También son los elementos que definen la identidad de cada ser vivo, ya que son la base de la estructura del código genético (ADN) y de los sistemas de reconocimiento de organismos extraños en el sistema inmunitario.  
  37. 40. NIVELES DE ORGANIZACÍON ESTRUCTURAL DE LAS PROTEÍNAS Las proteínas son polímeros lineales de aminoácidos unidos entre sí por medio de enlaces peptídicos. Sin embargo, la secuencia lineal de los aminoácidos puede adoptar múltiples conformaciones en el espacio . Estructura primaria Estructura secundaria Estructura terciaria Estructura cuaternaria
  38. 41. Estructura primaria Secuencia de aminoácidos especifica; los polipéptidos que tiene secuencias de aminoácidos semejantes se dice que son homólogos: trazadores de relaciones genéticas entre especies. Las residuos de aminoácidos que son esenciales para la función de la molécula se denominan invariables.
  39. 42. Estructura secundaria Estructura que adopta en el espacio. Existen ciertas estructuras repetitivas encontradas en las proteínas que permiten clasificaras en dos tipos. Hélice alfa Lamina plegada betta La alfa hélice es una estructura rígida que se forma cuando una cadena polipétidica se retuerce en una conformación helicoidal a la derecha. Se forman enlaces de H entre el grupo N-H de cada aminoácido y del grupo carboxilo del aminoácido que se encuentra a 4 residuos mas adelante.
  40. 43. Estructura secundaria Se forman cuando se alinean de lado dos o mas segmentos de la cadena polipéptidica. Cada segmento se denomina una cadena beta Estructura que se estabiliza por enlaces de H que se forman entre los grupos N-H y carboxilo del esqueleto polipéptidico de las cadenas adyacentes. Paralelas Antiparalelas (mas estables; enlaces de H colineales).
  41. 46. Es la conformación tridimensional única que asume una proteína debido a las interacciones entre las cadenas laterales de los aminoácidos. La estructura terciaria se estabiliza por las siguientes interacciones. Interacciones hidrófobas Electrostáticas Enlaces de H Enlaces covalentes (S-S) El plegamiento terciario no es inmediato, primero se agrupan conjuntos de estructuras denominadas dominios que luego se articulan para formar la estructura terciaria definitiva. Este plegamiento está facilitado por uniones denominadas puentes disulfuro, S-S que se establecen entre los átomos de azufre del aminoácido cisteína. Estructura terciaria
  42. 47. Estructura cuaternaria Están formadas por varias cadenas polipeptídicas. Procesos moleculares elevados. Cada componente polipeptídico se denomina subunidad. Las subunidades se mantienen unidas por enlaces covalentes y no covalentes.
  43. 48. The prealbumin dimer
  44. 49. Clasificación de las proteínas De acuerdo a su forma en: Fibrosas: son moléculas largas en forma de varilla que son insolubles en el agua (queratina; piel, uñas y pelo) con funciones protectoras. Globulares; moléculas esféricas hidrosolubles, con funciones dinámicas. Enzimas, inmunoglobulinas y proteínas de transporte (hemoglobina).
  45. 50. The structure of collagen fibers
  46. 51. Three-dimensional folding of the protein myoglobin
  47. 53. The distribution of hydrophilic and hydrophobic residues in globular proteins.
  48. 54. Clasificación de las proteínas De acuerdo a su composición en; Simples: aquellas que solo contienen aminoácidos (albumina sérica y la queratina). Conjugadas: proteína simple con un grupo no proteico “prostetico” haloproteínas Apoproteínas:carecen del grupo prostetico. Glucoproteinas, lipoproteínas,metaloproteínas y fosfoproteínas.
  49. 55. Función de las proteínas Catálisis Estructura (colágeno) Movimiento (actina, tubulina) Defensa (Fibrinógeno y trombina, inmunoglobulinas) Regulación (hormonas, insulina y el glucagon) Transporte (hemoglobina, trasferrina y transportadores de glucosa). Almacenamiento (ovoalbúmina, caseína (almacén de nitrógeno en mamíferos). Respuesta a agresiones (Exo y Endonucleasas)
  50. 56. Algunos métodos para purificar proteínas.
  51. 57. M étodo de maceración (homogenado en bufer); en el homogenado están en solución todos los compuestos que se encuentran en esta forma en el citoplasma de la célula y suspendidos los organelos intracelulares tales como mitocondrias, lisosomas o núcleos y fragmentos de membranas. Centrifugacion : Bajo estas condiciones, las partículas más pesadas se van al fondo del recipiente mas rápidamente que las menos pesadas. El siguiente paso es separar todas las proteínas de otras moléculas existentes en la mezcla. En la diálisis se usa una bolsa que tenga poros lo suficientemente pequeños para impedir el paso de moléculas grandes (proteínas), Otra forma de separar proteínas con tamaños diferentes, es mediante la filtración en gel .

×