Smestad Osa Fmb1 Fi O(Final)


Published on

Smestad, OSA FMB1 FiO 2009

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Smestad Osa Fmb1 Fi O(Final)

  1. 1. Greg P. Smestad, Ph.D. Solar Energy Materials and Solar Cells, USA and Sol Ideas Technology Development <ul><ul><ul><li>Optics of Solar Cells </li></ul></ul></ul>OSA’s 93 rd Annual Meeting - San Jos é , CA, USA, Frontiers in Optics (FiO) 2009/Laser Science (LS) 25th Conference
  2. 2. Optics for Renewable Energy Keynote Speaker: FMB1, Optics of Solar Cells, Greg P. Smestad, Monday, October 12, from 1:30 PM - 2:15 PM <ul><li>Systems Approach </li></ul><ul><li>Optical view of Solar Cells and Photovoltaics </li></ul><ul><li>Literature </li></ul><ul><li>What else is it good for? </li></ul><ul><li>Solar Energy Grid Interconnection Systems (SEGIS) </li></ul><ul><li>Solar R&D Plan </li></ul><ul><li>Where we go from here? </li></ul>
  3. 3. What are Systems? <ul><li>A system is a group of interacting, interrelated, and interdependent components that form a complex and unified whole. </li></ul><ul><li>Systems are everywhere: </li></ul><ul><ul><li>the R&D department in your organization, </li></ul></ul><ul><ul><li>the circulatory system in your body, </li></ul></ul><ul><ul><li>a photovoltaic cell or PV system. </li></ul></ul>
  4. 4. <ul><li>a framework that is based on the belief that the component parts of a system can best be understood in the context of relationships between components and with other systems, rather than in isolation. </li></ul><ul><li>It seeks an understanding of a system by examining the linkages and interactions between the elements that comprise the whole system. </li></ul><ul><li>Let’s look at a solar cell as a thermo-dynamic system </li></ul>Systems Thinking is
  5. 5. Solar Cells can be simple, but Courtesy: G.P. Smestad
  6. 6. they can also be complex. <ul><li>Courtesy of Dick Swanson, SunPower </li></ul>
  7. 7. Band Diagrams are useful, but Courtesy: G.P. Smestad
  8. 8. recombination determines efficiency. Courtesy: G.P. Smestad
  9. 9. Diode Equation Courtesy: Alexis de Vos
  10. 10. System Properties <ul><li>E nergy , material and information are among the different elements that comprise the system and these flow </li></ul><ul><ul><li>to and from the surrounding environment via semi-permeable membranes, barriers or boundaries. </li></ul></ul><ul><li>Systems are often composed of entities seeking equilibrium and can exhibit exponential behavior. </li></ul><ul><li>Entropy - the amount of disorder or randomness present in any system. </li></ul>
  11. 11. Senge Diagram Photovoltaic Cell Sun Other processes Absorption Luminescence Charge- Transport Courtesy: G.P. Smestad Electron-hole Generation and Recombination Changes in Chemical Potential Light Input and Output traps Carrier Extraction (Electricity) delay
  12. 12. The Planck Equation describes solar radiation, but Courtesy: G.P. Smestad
  13. 13. absorptivity describes what is absorbed. E. Sacks/MIT/1366 Technologies; Veeco Instrument Inc. Optical Profiler
  14. 14. Generalized Planck Equation Sun
  15. 15. Planck Describes Rad. Recombination Courtesy: G.P. Smestad
  16. 16. Define and Integrate Ideal Spectral Flux Quantum Kirchhoff's law Photons (Particles)
  17. 17. Detailed Balance
  18. 18. Diode Equation emerges from Planck
  19. 19. Radiative Recombination Courtesy: G.P. Smestad
  20. 20. Detailed Balance Efficiencies
  21. 21. All from a Systems Approach to a Photovoltaic Cell Sun Other processes Absorption Luminescence Charge- Transport Electron-hole Generation and Recombination Changes in Chemical Potential Light Input and Output traps Carrier Extraction (Electricity) delay
  22. 22. A Solar Cell is a System <ul><li>The performance of solar cells is determined by how its materials absorb, reflect and even emit light. </li></ul><ul><li>The voltage produced can be described using the Planck equation rather than the Fermi-Dirac equation. </li></ul><ul><ul><li>In other words, solar conversion can be viewed from the standpoint of the photon rather than the electron . </li></ul></ul><ul><li>Such an optical Systems Approach can be useful for understanding solar cell-device designs and the fundamental limitations to conversion efficiency for a given absorption. </li></ul>
  23. 23. Want More on this Optical Perspective? <ul><li>Look for publications by: </li></ul><ul><ul><li>Shockley and Queisser </li></ul></ul><ul><ul><li>Harald Ries </li></ul></ul><ul><ul><li>P. Wuerfel (W ürfel) </li></ul></ul><ul><ul><li>E. Yablonovitch and G. Cody </li></ul></ul><ul><ul><li>R. T. Ross </li></ul></ul><ul><ul><li>T. Markvart </li></ul></ul><ul><ul><li>T. Trupke </li></ul></ul><ul><li>PV Optics Computer Program: B. Sopori </li></ul><ul><li> </li></ul>
  24. 24. and (yes) Greg P. Smestad <ul><li>G. Smestad, &quot;Absorptivity as a predictor of the photoluminescence spectra of silicon solar cells and photosynthesis,&quot; Solar Energy Materials and Solar Cells, 38, 57, 1995. </li></ul><ul><li>Greg P. Smestad, Book: &quot;Optoelectronics of solar cells,&quot; SPIE Tutorial Vol. PM115 (International society for optics and photonics); ISBN 0-8194-4440-5,118 pages; Pub. July 2002; Softcover. </li></ul>
  25. 25. What else is it good for? <ul><li>Systems thinking techniques may be used to study any kind of system: natural , scientific , engineered , human , or conceptual . </li></ul><ul><li>Systems Analysis for solar R&D can identify key positive reinforcements that can accelerate the adoption of solar technologies. It can identify constraints that can decelerate solar technology adoption, as well as points of leverage where investment and R&D can have the most positive impact. </li></ul>
  26. 26. PV Module Systems K. R. McIntosh, R. M. Swanson and J. E. Cotter, A Simple Ray Tracer to Compute the Optical Concentration of Photovoltaic Modules , Prog. Photovolt: Res. Appl. 2006; 14:167 - 1 77.
  27. 27. Residential Systems <ul><li>Courtesy: Ron Smestad </li></ul>Smart Grid - Solar Energy Grid Interconnection Systems (SEGIS)
  28. 28. PV Systems Connected to Grid Sources: NREL photos/Arizona Public Service facility in Prescott; SolFocus The Solar Advisor Model (SAM) evaluates several types of financing (from residential to utility-scale) and a variety of technology-specific cost models for several and, eventually, all solar technologies.
  29. 29. SEGIS Dynamics needs Real-Time Data
  30. 30. Solar Resource Monitoring Courtesy: NREL Photos Book by Stuart Bowden and Christiana Honsberg;
  31. 31. PV Learning Curve
  32. 32. <ul><li>The Solar Industry: </li></ul><ul><ul><li>Similar to automobile industry in ultimate scale—and hence, </li></ul></ul><ul><ul><li>Expect large companies designing complete systems from integrated subsystems delivered by a network of suppliers. </li></ul></ul><ul><ul><li>Can get “there” from “here” via — </li></ul></ul><ul><li>Global Solar Industry Value Creation </li></ul>Senge Diagram — Representation of System-Focused Solar Industry Development Courtesy: Joe Morabito, Alcatel-Lucent, DOE/SETP March 2009 <ul><li>The Energy Internet: </li></ul><ul><ul><li>Will evolve from today’s grid </li></ul></ul><ul><ul><li>Can use the Information Internet as model for development </li></ul></ul><ul><ul><li>Key elements include: standards, consumers and producers, a network and an infrastructure for transport and storage </li></ul></ul><ul><ul><li>Can start with — </li></ul></ul><ul><li>“ Smart Grid” Infrastructure Development </li></ul><ul><li>How do these relate? </li></ul>
  33. 33. Senge Diagram — System-Focused Solar Industry Development Solar Industry Supply-Chain Consortium Public & Private Investments Analysis Technology Innovation Manufacturing Scale-up Sustainable Profit delay delay Market Growth System-Dynamics Modeling Unanticipated & Expanding Applications delay Industry Associations SEGIS OSA Courtesy: Joe Morabito, Alcatel-Lucent, DOE/SETP March 2009 Global Solar Industry Value Creation Market Supply-Chain Transformation “ Smart Grid” Infrastructure Development Federal Energy Policy (Congress) delay Innovation National Labs Industry & Universities
  34. 34. Powering the Solar Innovation Engine <ul><li>Interconnected systems reinforce the innovation process. </li></ul><ul><ul><li>Positive Reinforcement spins the wheels faster! </li></ul></ul><ul><li>Feedback loops create virtuous cycles. </li></ul>Global Solar Industry Value Creation International Policy & Innovation Federal Energy Policy (Congress) Innovation Market Supply Chain Transformation “ Smart Grid” Infrastructure Development US State Policies & Innovations Optics ? ? Science
  35. 35. Conclusions <ul><li>Solar Cells can be viewed from a purely optical perspective. </li></ul><ul><li>Solar Energy R&D and Industry Drivers should be considered in the context of Systems Thinking . </li></ul><ul><li>Such perspectives lead to a multidisciplinary, collaborative approach. </li></ul><ul><li>This can reduce the product development interval and facilitate technology transfer to more rapidly spin the Solar Innovation Engine. </li></ul>Solar One: Courtesy NREL Nellis/SunPower: Courtesy NREL
  36. 36. Thank you Greg P. Smestad, Ph.D. Solar Energy Materials and Solar Cells Sol Ideas Technology Development Visit for further information, references and links.
  37. 37. OSA Science Educators Day <ul><li>Thursday, October 15, 2009 </li></ul><ul><li>5:30 p.m.-8:00 p.m. </li></ul><ul><li>McCaw Hall, Frances C. Arrillaga Alumni Center, Stanford University </li></ul><ul><li>326 Galvez St. </li></ul><ul><li>Stanford, CA </li></ul><ul><li>Tel.: +1 650.723.2021 </li></ul><ul><li>Solar Cell Educational Kits </li></ul>