Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
The HKA Test <ul><li>(Hudson, Kreitman & Aguad é (1987)  Genetics  116) </li></ul><ul><li>θ  = 4N μ </li></ul><ul><li>N = ...
The HKA Test <ul><li>The HKA test is a “within species, between species” test </li></ul><ul><ul><li>The neutral mutation r...
The HKA Test <ul><li>… And </li></ul><ul><ul><li>Interspecific divergence to estimate  μ   </li></ul></ul>MRCA Species A S...
The HKA Test <ul><li>θ  and  μ  are calculated to estimate N </li></ul><ul><li>Selection is inferred when N varies between...
The HKA Test <ul><li>Hypothetical scenario 2: </li></ul>Locus 1 Locus 2 B A B A θ 1  = 100 θ 2  = 10 θ 1 / θ 2  = 10 θ 1  ...
The HKA Test <ul><li>The devil’s in the details: </li></ul><ul><ul><li>HKA (1987) proposed using  X 2  as a goodness-of-fi...
The HKA Test <ul><li>Coalescent simulations: </li></ul><ul><ul><li>Usually one locus is “known” to be neutral </li></ul></...
The HKA Test <ul><li>Compare the “neutral” simulation’s distribution to “selected” locus: </li></ul><ul><ul><li>Use  X 2  ...
The HKA Test <ul><li>With the HKA test you can ask:  </li></ul><ul><li>“ Can the differences between the two loci be expla...
Upcoming SlideShare
Loading in …5
×

The HKA Test

13,943 views

Published on

Published in: Business, Technology
  • Be the first to comment

The HKA Test

  1. 1. The HKA Test <ul><li>(Hudson, Kreitman & Aguad é (1987) Genetics 116) </li></ul><ul><li>θ = 4N μ </li></ul><ul><li>N = effective population size; μ = mutation rate </li></ul><ul><li>HKA teases apart which is responsible for θ , thereby testing for selection </li></ul><ul><li>Expectations under the neutral model: </li></ul><ul><ul><li>All loci share the same N </li></ul></ul><ul><ul><li>Each locus has its own characteristic neutral μ </li></ul></ul>
  2. 2. The HKA Test <ul><li>The HKA test is a “within species, between species” test </li></ul><ul><ul><li>The neutral mutation rate ( μ ) drives both intraspecific polymorphism and intraspecific divergence </li></ul></ul><ul><li>HKA test uses this to test for selection </li></ul><ul><ul><li>Intraspecific polymorphism from ≥2 loci to estimate θ … </li></ul></ul>Locus 1 Locus 2
  3. 3. The HKA Test <ul><li>… And </li></ul><ul><ul><li>Interspecific divergence to estimate μ </li></ul></ul>MRCA Species A Species B μ = d /2T μ = substitutions per site per year d = distance in substitutions per site between two sequences T = divergence time DNA sequences
  4. 4. The HKA Test <ul><li>θ and μ are calculated to estimate N </li></ul><ul><li>Selection is inferred when N varies between loci </li></ul><ul><li>Hypothetical scenario 1: </li></ul>Locus 1 Locus 2 B A B A θ 1 = 100 θ 2 = 10 θ 1 / θ 2 = 10 θ 1 > θ 2 , but μ 1 > μ 2 in a corresponding fashion Difference in θ explained by different μ , which neutrally varies from locus to locus N is the same for both loci: No selection μ 1 = d 1 /2T 1 μ 2 = d 2 /2T 2 μ 1 = 50 μ 2 = 5 μ 1 / μ 2 = 10
  5. 5. The HKA Test <ul><li>Hypothetical scenario 2: </li></ul>Locus 1 Locus 2 B A B A θ 1 = 100 θ 2 = 10 θ 1 / θ 2 = 10 θ 1 > θ 2 , but μ 1 = μ 2 Difference in θ can only be explained by difference in N One locus has an apparent reduction of N – infer Selection! μ 1 = d 1 /2T 1 μ 2 = d 2 /2T 2 μ 1 = 20 μ 2 = 20 μ 1 / μ 2 = 1 By the way: θ 1 = 4N 1 μ 1 θ 2 = 4N 2 μ 2 μ 1 = d 1 /2T 1 μ 2 = d 2 /2T 2 and… so, between species d is a measure of μ
  6. 6. The HKA Test <ul><li>The devil’s in the details: </li></ul><ul><ul><li>HKA (1987) proposed using X 2 as a goodness-of-fit test to see if the observed variables match the expected </li></ul></ul><ul><ul><li>Variables: </li></ul></ul><ul><ul><ul><li>Segregating sites – to calculate θ </li></ul></ul></ul><ul><ul><ul><li>Divergence between species – a measure of μ </li></ul></ul></ul><ul><ul><li>The real data is the observed, what’s the expected? </li></ul></ul><ul><ul><ul><li>Coalescent simulations of the neutral model! </li></ul></ul></ul><ul><ul><ul><li>Use known variables to seed simulations </li></ul></ul></ul>
  7. 7. The HKA Test <ul><li>Coalescent simulations: </li></ul><ul><ul><li>Usually one locus is “known” to be neutral </li></ul></ul><ul><ul><li>Use this one to seed simulations to get distribution </li></ul></ul>Use L2 parameters Simulate 1000 times Lots of variation around θ and μ Creates a distribution L1 L2 B A B A θ 1 = 58 μ 1 = 14 θ 2 = 10 μ 2 = 13
  8. 8. The HKA Test <ul><li>Compare the “neutral” simulation’s distribution to “selected” locus: </li></ul><ul><ul><li>Use X 2 test with 2*(No. loci)-2 degrees freedom </li></ul></ul><ul><ul><li>The more loci, the more statistical power you have </li></ul></ul>
  9. 9. The HKA Test <ul><li>With the HKA test you can ask: </li></ul><ul><li>“ Can the differences between the two loci be explained by variation under the neutral model?” </li></ul><ul><ul><li>Yes : explained by neutral variation of μ ; no selection </li></ul></ul><ul><ul><li>No : explained by non-neutral variation in N; N differs from neutral expectations and therefore locus has undergone selection </li></ul></ul>

×