Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Successfully reported this slideshow.

Like this presentation? Why not share!

- Linux install by Ashish Sharma Avi 566 views
- Powerpoint quality statistics_nzing... by Gildas Nzingoula 168 views
- Realtime r by Ajay Ohri 651 views
- Printer Friendly Version by dentistryinfo 1751 views
- Best Practices for Promoting the Re... by International Ene... 887 views
- Why ADaM for a statistician? by Kevin Lee 1972 views

3,524 views

Published on

Published in:
Technology

No Downloads

Total views

3,524

On SlideShare

0

From Embeds

0

Number of Embeds

8

Shares

0

Downloads

0

Comments

0

Likes

6

No embeds

No notes for slide

- 1. A Survey of R Graphics<br />June 18 2009<br />R Users<br />Group of LA<br />Michael E. Driscoll<br />Principal, Dataspora<br />mike@dataspora.com<br />
- 2. “The sexy job in the next ten years will be statisticians…”<br />- Hal Varian<br />
- 3.
- 4. Hypothesis<br />(from Jessica Hagy’s thisisindexed.com)<br />
- 5. Munge & Model<br />gdp <- read.csv('gdp.csv')hours <- read.csv('hours.csv')gdp.hours <- merge(hours,gdp)gdp.hours$freetime <- 4380 - gdp.hours$hoursattach(gdp.hours)plot(freetime ~ gdp)m <- lm(freetime ~ gdp,data=gdp.hours)abline(m,col=3,lw=2)pm <- loess(freetime ~ gdp)lines(spline(gdp,fitted(pm)))<br />
- 6. Visualization<br />library(ggplot2)<br />qplot(gdp,freetime,<br />data=gdp.hours,<br />geom=c("point",<br /> "smooth"),<br />span=1)<br />
- 7. basic graphics<br />
- 8. R’s Two Graphics Systems<br />
- 9. plot() graphs objects<br />plot(freetime ~ gdp, <br /> data=gdp.hours)<br />model <- lm(freetime ~ gdp,<br /> data=gdp.hours)<br />abline(model) <br />
- 10. plot() graphs objects<br />abline(model,<br />col="red",<br />lwd=3)<br />
- 11. par sets graphical parameters<br />par(pch=20, <br />cex=5,<br />col="#5050a0BB")<br />RGB hex<br />alpha blending!<br />plot(freetime ~ gdp, data=gdp.hours)<br />help(par)<br />
- 12. par sets graphical parameters<br />parameters<br />for par()<br />pch<br />col<br />adj<br />srt<br />pt.cex<br />graphing functions<br />points()<br />text()<br />xlab()<br />legend()<br />
- 13. Paneling Graphics<br />By setting one parameter in particular, mfrow, we can partition the graphics display to give us a multiple framework in which to panel our plots, rowwise.<br />par(mfrow= c( nrow, ncol))<br />Number of rows<br />Number of columns<br />
- 14. Paneling Graphics<br />par(mfrow=c(2,2))<br />hist(D$wg, main='Histogram',xlab='Weight Gain', ylab ='Frequency', col=heat.colors(14))<br />boxplot(wg.7a$wg, wg.8a$wg, wg.9a$wg, wg.10a$wg, wg.11a$wg, wg.12p$wg, main='Weight Gain', ylab='Weight Gain (lbs)',<br />xlab='Shift', names = c('7am','8am','9am','10am','11am','12pm'))<br />plot(D$metmin,D$wg,main='Met Minutes vs. Weight Gain', xlab='Mets (min)',ylab='Weight Gain (lbs)',pch=2)<br />plot(t1,D2$Intel,type="l",main='Closing Stock Prices',xlab='Time',ylab='Price $')<br />lines(t1,D2$DELL,lty=2)<br />
- 15. Paneling Graphics<br />
- 16. Working with Graphics Devices<br />Starting up a new graphic X11 window<br />x11()<br />To write graphics to a file, open a device, write to it, close.<br />pdf(“mygraphic.pdf”,width=7,height=7) <br />plot(x)<br />dev.off()<br />In Linux, the package “Cairo “ is recommended for a device that renders high-quality vector and raster images (alpha blending!). The command would read Cairo(“mygraphic.pdf”, …<br />Common gotcha: under non-interactive sessions, you should explicitly invoke a print command to send a plot object to an open device. For example <br /> print(plot(x))<br />
- 17. library(ggplot2)<br />
- 18. ggplot2 =grammar of graphics<br />
- 19. ggplot2 =grammar ofgraphics<br />
- 20. Visualizing 50,000 Diamonds with ggplot2<br />
- 21. qplot(carat, price, data = diamonds)<br />
- 22. qplot(log(carat), log(price), data = diamonds)<br />qplot(carat, price, log=“xy”, data = diamonds)<br />OR<br />
- 23. qplot(log(carat), log(price), data = diamonds, <br />alpha = I(1/20))<br />
- 24. qplot(log(carat), log(price), data = diamonds, <br />alpha = I(1/20), colour=color)<br />
- 25. Achieving small multiples with “facets”<br />qplot(log(carat), log(price), data = diamonds, alpha=I(1/20)) + facet_grid(. ~ color)<br />
- 26. old<br />new<br />qplot(color, price/carat, <br />data = diamonds, alpha = I(1/20), geom=“jitter”)<br />qplot(color, price/carat, <br />data = diamonds,<br />geom=“boxplot”)<br />
- 27.
- 28. library(lattice)<br />
- 29. lattice = trellis<br />(source: http://lmdvr.r-forge.r-project.org )<br />
- 30. visualizing six dimensions<br />of MLB pitches with lattice<br />
- 31. xyplot(x ~ y, data=pitch)<br />
- 32. xyplot(x ~ y, groups=type, data=pitch)<br />
- 33. xyplot(x ~ y | type, data=pitch)<br />
- 34. xyplot(x ~ y | type, data=pitch,<br />fill.color = pitch$color,<br />panel = function(x,y, fill.color, …, subscripts) {<br /> fill <- fill.color[subscripts]<br />panel.xyplot(x,y, fill= fill, …) })<br />
- 35. xyplot(x ~ y | type, data=pitch,<br />fill.color = pitch$color,<br />panel = function(x,y, fill.color, …, subscripts) {<br /> fill <- fill.color[subscripts]<br />panel.xyplot(x, y, fill= fill, …) })<br />
- 36. A Story of Two Pitchers<br />Hamels<br />Webb<br />
- 37. list of latticefunctions<br />densityplot(~ speed | type, data=pitch)<br />
- 38. plotting big data<br />
- 39. xyplotwith 1m points = Bad Idea Jeans<br />xyplot(log(price)~log(carat),data=diamonds)<br />
- 40. efficient plotting with hexbinplot<br />hexbinplot(log(price)~log(carat),data=diamonds,xbins=40)<br />
- 41. 100<br />thousand <br />gene measures<br />
- 42. efficient plotting with geneplotter<br />
- 43. beautiful colors with Colorspace<br />library(“Colorspace”)<br />red <- LAB(50,64,64)<br />blue <- LAB(50,-48,-48)<br />mixcolor(10, red, blue)<br />
- 44. R-->web<br />
- 45. LinuxApacheMySQLR<br />http://labs.dataspora.com/gameday<br />
- 46.
- 47.
- 48. Configuring rapache<br />Hello world script<br />setContentType("text/html")<br />png("/var/www/hello.png")<br />plot(sample(100,100),col=1:8,pch=19)<br />dev.off()<br />cat("<html>")<br />cat("<body>")<br />cat("<h1>hello world</h1>")<br />cat('<imgsrc="../hello.png"')<br />cat("</body>")<br />cat("</html>")<br />
- 49. Data Visualization References<br />ggplot2: Elegant Graphics for Data Analysis<br />by Hadley Wickham<br />http://had.co.nz/ggplot2<br />Lattice: Multivariate Data Visualization with R<br />by DeepayanSarkar<br />http://lmdvr.r-forge.r-project.org/<br />

No public clipboards found for this slide

Be the first to comment