Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
ตรีโกณมิติ ตรีโกณ ความหมายตามพจนานุกรมแปลว่า สามเหลี่ยม  ตรีโกณมิติ คือ คณิตศาสตร์แขนงหนึ่งที่ว่าด้วยการคำนวณ  มุมของสามเห...
ความเป็นมา เมื่อ  640-546  ปี ก่อนคริสต์ศักราช ทาเรส  (thales) คำนวณหาความสูง ของพีรามิด ในประเทศอียิปต์โดยอาศัยเงา วิธีหน...
อัตราส่วนตรีโกณมิติ    อัตราส่วนตรีโกณมิติ  ( Trigonometric Ratio)  หมายถึง อัตราส่วนของด้านของรูปสามเหลี่ยมมุมฉาก การเรีย...
จากรูป  ABC  เป็นรูปสามเหลี่ยมมุมฉาก  โดยมี  AĈB  = 90  องศา  ถ้าเราพิจารณาที่มุม  A 1.  ด้าน  AB  เรียกว่า  ด้านตรงข้ามมุ...
"Sine A"  ไซน์ของมุม  A  หรือเขียนย่อว่า  sin A  หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุม  A  ต่อความยาวด้านตรง...
ส่วนฟังก์ชัน  cosec, sec  และ  cot  นั้น ก็ใช้นิยามเข้าช่วย ซึ่งเป็นส่วนกลับของ  sin, cos  และ  tan  ตามลำดับ จึงต้องจำฟัง...
ข้อสังเกต 1.  0 < sin A < 1  และ  cosec A > 1 2.  0 < cos A < 1  และ  sec A > 1 3.  sin ( A + B )     sin A + sin B 4.  =...
ค่าของฟังก์ชันตรีโกณมิติ  อัตราส่วนตรีโกณมิติ
เอกลักษณ์ตรีโกณมิติ นิยาม เอกลักษณ์ตรีโกณมิติ  คือ  การเท่ากันของอัตราส่วนตรีโกณมิติที่ต่างกันและเป็นจริงสำหรับทุกๆค่าของอ...
  ฟังก์ชันของมุมรอบจุด ข้อสังเกต     1.  ฟังก์ชัน       90o    +    A        ,          270o    +    A                  จะ...
- sin A cos A - tan A - cot A sec A - csc A sin A cos A tan A cot A sec A csc A - sin A cos A - tan A - cot A sec A - csc ...
หน่วยองศา 1  องศา       60' ( ลิปดา )  1  ลิปดา      60&quot; ( ฟิลิปดา ) หน่วยเรเดียน   มุม
เครื่องหมายของฟังก์ชันตรีโกณมิติตามควอแดรนต์
Upcoming SlideShare
Loading in …5
×

3

1,266 views

Published on

  • Be the first to comment

3

  1. 1. ตรีโกณมิติ ตรีโกณ ความหมายตามพจนานุกรมแปลว่า สามเหลี่ยม ตรีโกณมิติ คือ คณิตศาสตร์แขนงหนึ่งที่ว่าด้วยการคำนวณ มุมของสามเหลี่ยม
  2. 2. ความเป็นมา เมื่อ 640-546 ปี ก่อนคริสต์ศักราช ทาเรส (thales) คำนวณหาความสูง ของพีรามิด ในประเทศอียิปต์โดยอาศัยเงา วิธีหนึ่งที่ทาเรสใช้คือ คำนวณความสูงของพีรามิดจากความยาวของเงาของพีรามิด ในขณะที่เงาของเขามีความยาวเท่ากับความสูงของเขาเอง อีกวิธีหนึ่งที่ทาเรสใช้คำนวณ ความสูงของพีรามิดคือ การเปรียบเทียบความยาวของเงาของพีรามิดกับความยาวของเงาของไม้ ( ไม้ที่ทราบความยาว ถ้าสมัยนี้ก็คือไม้เมตรนั่นเอง ) โดยอาศัยรูปสามเหลี่ยมคล้าย ซึ่งก็คือ อัตราส่วนตรีโกณมิติที่เรียกว่า แทนเจนต์ (tangent) นั่นเอง
  3. 3. อัตราส่วนตรีโกณมิติ   อัตราส่วนตรีโกณมิติ ( Trigonometric Ratio) หมายถึง อัตราส่วนของด้านของรูปสามเหลี่ยมมุมฉาก การเรียนในเรื่องนี้ผู้เรียนจำเป็นต้อง ใช้ความรู้เดิมเรื่องสามเหลี่ยมคล้ายเพื่อเป็นพื้นฐานในการทำความเข้าใจ การเรียนวิชาตรีโกณมิติให้ได้ดีนั้นต้องจำนิยามของตรีโกณมิติให้ได้ ระดับมัธยมต้นใช้นิยามสามเหลี่ยมมุมฉาก ซึ่งอัตราส่วนตรีโกณมิติ ก็คือ อัตราส่วนของความยาวด้านสองด้านของสามเหลี่ยมมุมฉากซึ่งจะมีชื่อเรียกดังนี้
  4. 4. จากรูป ABC เป็นรูปสามเหลี่ยมมุมฉาก โดยมี AĈB = 90 องศา ถ้าเราพิจารณาที่มุม A 1. ด้าน AB เรียกว่า ด้านตรงข้ามมุมฉาก 2. ด้าน BC เรียกว่า ด้านตรงข้ามมุม A 3. ด้าน AC เรียกว่า ด้านประชิดมุม A A B C a b c
  5. 5. &quot;Sine A&quot; ไซน์ของมุม A หรือเขียนย่อว่า sin A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุม A ต่อความยาวด้านตรงข้ามมุมฉาก &quot;Cos A&quot; โคไซน์ของมุม A หรือเขียนย่อว่า cos A หาได้จากอัตราส่วนของความยาวด้านประชิดมุม A ต่อความยาวด้านตรงข้ามมุมฉาก &quot;Tangent A&quot; แทนเจนต์ของมุม A หรือเขียนย่อว่า tan A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุม A ต่อความยาวด้านประชิดมุม A
  6. 6. ส่วนฟังก์ชัน cosec, sec และ cot นั้น ก็ใช้นิยามเข้าช่วย ซึ่งเป็นส่วนกลับของ sin, cos และ tan ตามลำดับ จึงต้องจำฟังก์ชัน sin, cos, tan ก็จะได้ในส่วนของ cosec, sec และ cot ขึ้นมาเองโดยอัตโนมัติ &quot;Cotangent A&quot; โคแทนเจนต์ของมุม A หรือเขียนย่อว่า cot A หาได้จากอัตราส่วนของความยาวด้านด้านประชิดมุม A ต่อความยาวด้านตรงข้ามมุม A &quot;Secant A&quot; ซีแคนต์ของมุม A หรือเขียนย่อว่า sec A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุมฉาก ต่อ ความยาวด้านประชิดมุม A &quot;Cosecant A&quot; โคซีแคนต์ของมุม A หรือเขียนย่อว่า cosec A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุมฉาก ต่อ ความยาวด้านตรงข้ามมุม A
  7. 7. ข้อสังเกต 1. 0 < sin A < 1 และ cosec A > 1 2. 0 < cos A < 1 และ sec A > 1 3. sin ( A + B )  sin A + sin B 4. =  5. (sin A)(sin A) = (sin A) 2 = sin 2 A  sin A 2 6. sin A = cos ( 90 – A ) 7. cos A = sin ( 90 – A ) 8. tan A = cot ( 90 – A ) 9. sec A = cosec ( 90 – A )
  8. 8. ค่าของฟังก์ชันตรีโกณมิติ อัตราส่วนตรีโกณมิติ
  9. 9. เอกลักษณ์ตรีโกณมิติ นิยาม เอกลักษณ์ตรีโกณมิติ คือ การเท่ากันของอัตราส่วนตรีโกณมิติที่ต่างกันและเป็นจริงสำหรับทุกๆค่าขององศา เมื่อกำหนด A เป็นมุมแหลม 1. sin A x cosec A = 1 2. cos A x sec A = 1 3. tan A x cot A = 1 4. cos A x tan A = sin A 5. cot A x sin A = cos A 6. sin 2 A + cos 2 A = 1 7. sec 2 A - tan 2 A = 1 8. cosec 2 A - cot 2 A = 1
  10. 10.   ฟังก์ชันของมุมรอบจุด ข้อสังเกต   1. ฟังก์ชัน       90o    +   A        ,         270o    +   A                  จะได้    co-function   2. ฟังก์ชัน     180o    +   A        ,    n  .  360o    +   A    ,   -A       จะได้ฟังก์ชันเดิม
  11. 11. - sin A cos A - tan A - cot A sec A - csc A sin A cos A tan A cot A sec A csc A - sin A cos A - tan A - cot A sec A - csc A -cos A sin A - cot A - tan A csc A - sec A - cos A - sin A cot A tan A - csc A - sec A - sin A - cos A tan A cot A - sec A - csc A sin A - cos A - tan A - cot A - sec A csc A cos A - sin A - cot A - tan A - csc A sec A cos A sin A cot A tan A csc A sec A sin cos tan cot sec csc - A 360 o + A 360 o - A 270 o + A 270 o - A 180 o + A 180 o - A 90 o + A 90 o - A
  12. 12. หน่วยองศา 1 องศา       60' ( ลิปดา ) 1 ลิปดา      60&quot; ( ฟิลิปดา ) หน่วยเรเดียน มุม
  13. 13. เครื่องหมายของฟังก์ชันตรีโกณมิติตามควอแดรนต์

×