Upcoming SlideShare
×

# Circle Area Proof-GEOMTRY

2,401 views

Published on

Cool way to prove geometry!

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
2,401
On SlideShare
0
From Embeds
0
Number of Embeds
50
Actions
Shares
0
29
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Circle Area Proof-GEOMTRY

1. 1. How would you calculate the area of this circle ? ...probably using the formula A =  R 2 Since the diameter is 2 feet, Click your mouse for the next idea ! The constant  , called “pi”, is about 3.14 ? 2 feet so A =  R 2  3.14 * 1 * 1  3.14 square feet  means “about equal to” R 1 foot “ R”, the radius, is 1 foot.
2. 2. Click your mouse for the next idea ! ? LETS explore how people figured out circle areas before all this  business ? The ancient Egyptians had a fascinating method that produces answers remarkably close to the formula using pi. 2 feet
3. 3. Click your mouse for the next idea ! ? The Egyptian Octagon Method Draw a square around the circle just touching it at four points. What is the AREA of this square ? 2 feet Well.... it measures 2 by 2, so the area = 4 square feet. 2 feet
4. 4. Click your mouse for the next idea ! The Egyptian Octagon Method 2 feet Now we divide the square into nine equal smaller squares. Sort of like a tic-tac-toe game ! Notice that each small square is 1/9 the area of the large one -- we’ll use that fact later ! 2 feet
5. 5. Click your mouse for the next idea ! The Egyptian Octagon Method 2 feet Finally... we draw lines to divide the small squares in the corners in half, cutting them on their diagonals. Notice the 8-sided shape, an octagon, we have created ! Notice, also, that its area looks pretty close to that of our circle ! 2 feet
6. 6. Click your mouse for the next idea ! The Egyptian Octagon Method 2 feet The EGYPTIANS were very handy at finding the area of this Octagon 2 feet 1 9 After all, THIS little square has an area 1/9 th of the big one... 1 9 1 9 1 9 1 9 And so do these four others... And each corner piece is 1/2 of 1/9 or 1/18 th of the big one 1. 18 1. 18 1. 18 1. 18
7. 7. Click your mouse for the next idea ! The Egyptian Octagon Method 2 feet ...and ALTOGETHER we’ve got... For a total area that is 7/9 ths of our original big square 2 feet 1. 18 1. 18 1. 18 1. 18 4 pieces that are 1/18 th or 4/18 ths which is 2/9 ths 1 9 1 9 1 9 1 9 1 9 Plus 5 more 1/9 ths
8. 8. Click your mouse for the next idea ! The Egyptian Octagon Method 2 feet FINALLY... Yep, we’re almost done ! The original square had an area of 4 square feet. So the OCTAGON’s area must be 7/9 x 4 or 28/9 or 3 and 1/9 or about 3.11 square feet 2 feet We have an OCTAGON with an area = 7/9 of the original square. 7 9
9. 9. AMAZINGLY CLOSE to the pi-based “modern” calculation for the circle ! 3.11 square feet 3.14 square feet only about 0.03 off... about a 1% error !!