Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Proceedings nf ma ht-2015

670 views

Published on

Naucna konferencija
Novi funkcionalni materijali
Visoke tehnologije
Ekologija i zaštita životne sredine
Informatičke tehnologije u nauci i obrazovanju
Akademik,prof,dr Mitar Lutovac

Published in: Education
  • Be the first to comment

  • Be the first to like this

Proceedings nf ma ht-2015

  1. 1. Russian Academy of Sciences Academy of Sciences and Arts of the Republika Srpska G.A. Krestov Institute of Solution Chemistry (ISC) Voronezh State Technical University Ivanovo State University of Chemistry and Technology A.V. Topchiev Institute of Petrochemical Synthesis Serbian Royal Academy of Scientists and Artists Serbian Royal Academy of Innovation Sciences University Union "Nikola Tesla", Faculty of Business and Industrial Management, Belgrade, Serbia Pedagogy club, Tivat 3rd International Conference New Functional Materials and High Technology NNFFMMaaHHTT 22001155 PPRROOCCEEEEDDIINNGGSS Editor: Mitar Lutovac Tivat, Montenegro 29-30 June 2015
  2. 2. UDC 661:574:502/504:004 Proceedings of the 3rd International Conference "New Functional Materials and High Technology" (NFMaHT-2015) (29-30 June 2015; Tivat, Montenegro). Ivanovo (Russia): Институт химии растворов им. Г.А. Крестова Российской академии наук (ИХР-РАН) / G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences (ISC-RAS), 2015. – 250 pp. ISBN 978-5-905364- 10-5. Publisher: Институт химии растворов им. Г.А. Крестова Российской академии наук (ИХР- РАН) / G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences (ISC-RAS), Ivanovo, Russia For publisher: Prof. dr Konstantin Pochivalov, G.A. Krestov Institute of Solution Chemistry RAS, Moscow (Russia) Editor: Acad. Prof. dr Mitar Lutovac, University Union "Nikola Tesla", Faculty of Business and Industrial Management, Belgrade (Serbia) Reviewers: Acad. Prof. dr Yury N. Shalimov, Russian Academy of Sciences (RAS), Moscow (Russia) Prof. dr Vladimir Petrenko, Voronezh State Technical University, Voronezh (Russia) Acad. Prof. dr Rade Biočanin, University of Novi Pazar, Novi Pazar (Serbia) Technical processing and design: Predrag Dašić, SaTCIP Publisher Ltd., Vrnjačka Banja (Serbia) Jovan Dašić, SaTCIP Publisher Ltd., Vrnjačka Banja (Serbia) Veis Šerifi, SaTCIP Publisher Ltd., Vrnjačka Banja (Serbia) Articles are published in author's edition Disclaimer Note The content of this publication, data, discussions and conclusions presented by the authors are for information only and are not intended for use without independent substantiating investigations on the part of potential users. Opinions expressed by the Authors are not necessarily in accordance G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences (ISC-RAS) as the Publisher, and the organizer and editor are not responsible for any statement in this publication. Copyright © 2015 Russian Academy of Sciences (RAS) All rights are reserved for this publication, which is copyright according to the International Copyright Convention. Excepting only any fair dealing for the purpose of private study, research, review, comment and criticism, no part of this publication can be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, electrical, electronic, optical, photocopying, recording or otherwise, without the prior expressed permission of the copyright owners. Unlicensed copying of the contents of this publication is illegal. ISBN 978-5-905364-10-5 Институт химии растворов им. Г.А. Крестова Российской академии наук (ИХР-РАН) / G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences (ISC-RAS), Ivanovo, Russia II
  3. 3. ORGANIZERS Russian Academy of Sciences Academy of Sciences and Arts of the Republika Srpska G.A. Krestov Institute of Solution Chemistry (ISC) Voronezh State Technical University Ivanovo State University of Chemistry and Technology A.V. Topchiev Institute of Petrochemical Synthesis Serbian Royal Academy of Scientists and Artists Serbian Royal Academy of Innovation Sciences University Union "Nikola Tesla", Faculty of Business and Industrial Management, Belgrade, Serbia Pedagogy club, Tivat ORGANIZING COMMITTEE 1. Acad. Prof. dr Mitar Lutovac, University Union "Nikola Tesla", Faculty of Business and Industrial Management, Belgrade (Serbia), Chairman 2. Prof. dr Konstantin Pochivalov, G.A. Krestov Institute of Solution Chemistry RAS, Moscow (Russia), Vice-chairman 3. Acad. Prof. dr Yury N. Shalimov, Moscow (Russia), Vice-chairman 4. Predrag Dašić, SaTCIP Publisher Ltd., Vrnjačka Banja (Serbia), Vice-chairman 5. Dr Nataša Bogavac, University Union "Nikola Tesla", Faculty of Business and Industrial Management, Belgrade (Serbia) 6. Dr Dubravka Skunca, University Union "Nikola Tesla", Faculty of Business and Industrial Management, Belgrade (Serbia) 7. Dr Dragana Trnavac, University Union "Nikola Tesla", Faculty of Business and Industrial Management, Belgrade (Serbia) 8. Mirko Gardašević, Ministry of Police, Belgrade (Serbia) 9. Nataša Lutovac, Pedagogy club, Tivat (Montenegro) 10. Milja Tairova, Pedagogy club, Tivat (Montenegro) 11. Aleksandar Pavićević, Pedagogy club, Tivat (Montenegro) III
  4. 4. SCIENTIFIC COMMITTEE 1. Prof. dr Konstantin Pochivalov, G.A. Krestov Institute of Solution Chemistry RAS, Moscow (Russia), Chairman 2. Acad. Prof. dr Mitar Lutovac, Union University, Faculty of Business and Industrial Management, Belgrade (Serbia), Vice-chairman 3. Prof. dr Anatoly P. Avdeenko, Donbass State Engineering Academy (DSEA), Kramatorsk (Ukraine) 4. Acad. Prof. dr Rade Biočanin, University of Novi Pazar, Novi Pazar (Serbia) 5. Prof. dr Milija Bogavac, University Union "Nikola Tesla", Faculty of Business and Industrial Management, Belgrade (Serbia) 6. Prof. dr Goran Bojović, University Union "Nikola Tesla", Belgrade (Serbia) 7. Prof. dr Constantin Bungau, rector, University of Oradea, Oradea (Romania) 8. Acad. Prof. dr Mikhail V. Burmistr, rector, Ukrainian State University of Chemical Engineering, Dniepropetrovsk (Ukraine) 9. Akademik Prof. dr Milka Đukić, University Union "Nikola Tesla", Belgrade (Serbia) 10. Prof. dr Milan Đuričić, University Union "Nikola Tesla", Faculty of Business and Industrial Management, Belgrade (Serbia) 11. Acad. Prof. dr Vladimir Ermurackii, Academy of Sciences of Moldova (ASM), Chişinău (Moldova) 12. Prof. dr Volodymir A. Fedorinov, Donbass State Engineering Academy (DSEA), Kramatorsk (Ukraine) 13. Acad. Prof. dr Gordana Gasmi, Institute of Comparative Law, Belgrade (Serbia) 14. Prof. dr Dragan Golubović, University of Kragujevac, Technical Faculty, Čačak (Serbia) 15. Acad. Prof. dr Filip P. Govorov, National Academy of Sciences of Ukraine (NAS), Kiev (Ukraine) 16. Alexander L. Gusev, Institute for Hydrogen Economy, Sarov (Russia) 17. Prof. dr Raycho Ilarionov, rector, Technical University of Gabrovo (Bulgaria) 18. Acad. Dr Ljubinko Ilić, SKAIN Academy, Belgrade (Serbia) 19. Acad. Prof. dr. Burchiu Vitaliy Ivanovich, Academy of Sciences of Moldova (ASM), Chişinău (Moldova) 20. Prof. dr Esad Jakupović, rector, Apeiron University, Banja Luka (Bosnia and Hercegovina) 21. Prof. dr Ivan Joksić, Commercial Legal Academy, Novi Sad (Serbia) 22. Acad. Prof. Dr Stevan Karamata, Serbian Academy of Sciences and Arts (SANU), Belgrade (Serbia) 23. Prof. dr Stefan Kartunov, Technical University of Gabrovo (Bulgaria) 24. Prof. dr Dragomir Kicović, dean, Faculty of Sciences, Kosovska Mitrovica (Serbia) 25. Prof. dr Dragan Klarić, Faculty of Management, Herceg Novi (Montenegro) 26. Prof. dr Viktor D. Kovalov, rector, Donbass State Engineering Academy (DSEA), Kramatorsk (Ukraine) 27. Dr Yaroslav Kudryavcev, A.V. Topchiev Institute of Petrochemical Synthesis RAN, Moscow (Russia) 28. Prof. dr Vlatko Marušić, University of Osijek, Mechanical Engineering Faculty, Slavonski Brod (Croatia) 29. Acad. Prof. dr Dragoljub Mirjanić, Academy of Sciences and Arts of the Republic of Srpska (ANURS), Banja Luka (Republic of Srpska - Bosnia and Hercegovina) 30. Prof. dr Liviu Moldovan, vice-rector, "Petru Maior" University, Tîrgu Mureş (Romania) 31. Prof. dr Valentin Nedeff, rector, University of Bacău, Faculty of Engineering, Bacău (Romania) 32. Acad. Prof. dr Ilija Neikov Nemigenčev, Technical University of Gabrovo (Bulgaria) 33. Acad. Prof. dr Slobodan Nešković, Center for Strategic Research of the National Security, Belgrade (Serbia) IV
  5. 5. 34. Prof. dr Sergey Grigoryev Nikolaevich, rector, Moscow State Technological University, Moscow (Russia) 35. Acad. Prof. dr Časlav Ocić, Serbian Academy of Sciences and Arts (SANU), Belgrade (Serbia) 36. Prof dr Constantin Oprean, rector, Lucian Blaga University of Sibiu, Sibiu (Romania) 37. Acad. Prof. dr Tomislav Pavlović, Academy of Sciences and Arts of the Republic of Srpska (ANURS), Banja Luka (Republic of Srpska - Bosnia and Hercegovina) 38. Acad. Prof. dr Stane Pejocnik, Slovenian Academy of Sciences and Arts (SAZU), Ljubljana (Slovenia) 39. Prof. dr Vladimir Petrenko, Voronezh State Technical University, Voronezh (Russia) 40. Acad. Prof. dr Semyon Leonidovich Podvalny, Russian Academy of Sciences (RAS), Moscow (Russia) and European Academy of Sciences (EAS) 41. Acad. Prof. dr Džerald Polak, Washington University, Seattle (Washington - USA) 42. Prof. dr Dragan Prlja, Institute of Comparative Law, Belgrade (Serbia) 43. Prof. dr Igor Sergeevich Sazonov, rector, Belarusian-Russian University, Mogilev (Belarus) 44. Prof. dr Adolfo Senatore, University of Salermo, Faculty of Mechanical Engineering, Fisciano (Italy) 45. Acad. Prof. dr Yury N. Shalimov, Russian Academy of Sciences (RAS), Moscow (Russia) 46. Akademik Prof. dr Svetlana Stevović, University Union "Nikola Tesla", Belgrade (Serbia) 47. Prof. dr Vladimir Stojanović, University Union "Nikola Tesla", Faculty of Business and Industrial Management, Belgrade (Serbia) 48. Acad. Prof. dr Igor Rostislavovič Šafarevič, Russian Academy of Sciences (RAS), Moscow (Russia) 49. Acad. Prof. dr Milinko Šaranović, Montenegrin Academy of Sciences and Arts (CANU), Podgorica (Montenegro) 50. Acad. Prof. dr Branko Škundrić, Academy of Sciences and Arts of the Republic of Srpska (ANURS), Banja Luka (Republic of Srpska - Bosnia and Hercegovina) 51. Acad. Prof. dr Peter M. Talanchuk, National Technical University of Ukraine, Kiev Polytechnic Institute (KPI), Kiev (Ukraine) 52. Prof. dr Miroslav Talijan, Military Academy, Belgrade (Serbia) 53. Prof. dr Vladimir Tonkonogiy, Odessa National Polytechnic University (ONPU), director, Institute of Industrial Technology, Design and Management, Odessa (Ukraine) 54. Prof. dr Mirela Toth-Tascau, Politehnica University of Timişoara, Faculty of Mechanical Engineering, Timişoara (Romania) 55. Prof. dr Milica Uvalić, University of Perugia, Perugia (Italy) 56. Prof. dr Ioana Vasiu, Babes-Bolyai University, Cluj Napoca (Romania) 57. Prof. dr Nikolaos Vaxevanidis, Institute of Pedagogical & Technological Education, N. Heraklion Attikis (Greece) 58. Prof. dr Vlado Vukasović, Faculty of Mediterranean Studies, Tivat (Montenegro) 59. Prof. dr Mladen Vuruna, General major, Belgrade (Serbia) 60. Acad. Prof. dr Pasichnik Yury, National Academy of Sciences of Ukraine (NAS), Kiev (Ukraine) 61. Prof. dr Anatoly Zaharov, director, G.A. Krestov Institute of Solution Chemistry, Moscow (Russia) 62. Assoc. Prof. dr Iliya Zhelezarov, vice-rector, Technical University of Gabrovo (Bulgaria) 63. Acad. Olga Zorić, SKAIN Academy, Belgrade (Serbia) V
  6. 6. VI
  7. 7. VII P R E F A C E The International Conference "New Functional Materials and High Technology" (NFMaHT-2015) was established last year with the aim to animate scientists from the faculties and institutes and experts from the industry to involve themselves in finding solutions for the challenges in modern, dynamic environment. Aiming to become a traditional conference, NFMaHT encourages potential participants to express their findings and ideas in order to give their contribution to the development of economic and management theory, as well as to the improvement of business practice. Through connecting and collaboration, domestic and foreign scientists and experts may provide their own development, as well as the synergic effects for their organizations. As a result of knowledge and experience networking, the conference may provide the recommendations and possible solutions for improving competitiveness of enterprises in so-called new knowledge society. The conference brings together participants from Russia, Serbia, Montenegro, West Balkan and beyond. This year the conference NFMaHT-2015 was chosen by more than 7 researches (authors and co-authors) as the place for presentation of their achievements as invitation papers. Total number of papers exceeds 56. Accepted papers are published in proceedings in hard copy and in electronic form (CD-ROM) and they include 496 pages. The 3rd International Conference "New Functional Materials and High Technology" (NFMaHT-2015) was held on 29-30 June 2015, in Tivat, Montenegro. The Conference NFMaHT-2015 includes the following topics:  New functional materials and high technology;  Ecology and environmental protection;  Information and communication technologies in education and science. On behalf of the organizers, hereby we express a gratitude to all organizations and individuals that have supported the initiative for organizing this conference. We would also like to extend our gratitude to all authors and participants from abroad and from the country for their contribution to this conference. Tivat, June 2015 Chairman of Organizing Committee Acad. Prof. dr Mitar Lutovac Vice-chairman of Organizing Committee Prof. dr Konstantin Pochivalov
  8. 8. C O N T E N T S PLENARY SESSION (INVITATION PAPERS) P-1. Шалимов Ю.Н., Соколов С.А. (Воронеж – Россия), Лутовац М. (Белград – Сербия), Макаров П.Н. (Воронеж – Россия) ОБ ИСПОЛЬЗОВАНИИ ВОДОРОДНЫХ СИСТЕМ ДЛЯ ЭНЕРГООБЕСПЕЧЕНИЯ ОБОРУДОВАНИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И СТАЦИОНАРНЫХ ЭНЕРГОУСТАНОВОК 1 P-2. Mirjanić Lj.D. (Banja Luka - Bosnia and Herzegovina), Pavlović M.T., Milosavljević D.D. (Niš – Serbia) CONTEMPORARY MATERIALS FOR PHOTOVOLTAIC SOLAR ENERGY CONVERSION 7 P-3. Pochivalov K.V. (Ivanovo - Russia), Kudryavtsev Y.V. (Moscow - Russia), Miletić Lj. (Belgrade - Serbia) PHYSICO-CHEMICAL BASIS FOR MANUFACTURING TECHNOLOGIES OF SOLUTION-PROCESSED POLYMER PRODUCTS 18 P-4. Stevović S., Džoljić J., Lutovac M. (Belgrade – Serbia) COMPRESSED HYDROGEN AS A NEW ENVIRONMENTALLY FRIENDLY RENEWABLE RESOURCE 25 P-5. Подвальный С.Л., Васильев Е.М. (Воронеж – Россия) ЭВОЛЮЦИОННАЯ КОНЦЕПЦИЯ МНОГО-АЛЬТЕРНАТИВНОСТИ В ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЯХ 34 P-6. Jusufranić I., Milešević T. (Travnik - Bosnia and Herzegovina), Biočanin R. (Novi Pazar – Serbia) WATER FACILITIES IN THE SYSTEM OF URBAN SUSTAINABLE DEVELOPMENT 40 P-7. Dašić P. (Vrnjačka Banja – Serbia) TREND ANALYSIS OF NUMBER OF JOURNALS IN THE FIELDS OF "MATERIALS SCIENCE" 60 PAPERS A-1. Adrović S. (Berane – Montenegro) QUALITY OF SPRING AND MINERAL WATERS IN MONTENEGRO 73 A-2. Armaković S., Armaković J.S. (Novi Sad – Serbia), Pelemiš S.S. (Zvornik - Bosnia and Herzegovina), Mirjanić Lj.D. (Banja Luka - Bosnia and Herzegovina) ADSORPTION PROPERTIES OF BORON MODIFIED GRAPHENE TOWARDS THE CO2 MOLECULES 81 A-3. Badiu I., Popa M.S. (Cluj-Napoca – Romania) THE INFLUENCE OF PRODUCTIVITY IN ELECTRICAL THE EROSION PROCESS 88 A-4. Bajčetić M. (Novi Sad – Serbia), Brnjaš Z., Drašković B. (Belgrade – Serbia) ECONOMIC CHARACTERISTICS OF WATER PROTECTION IN THE WATER AND ENVIRONMENTAL MANAGEMENT 94 IX
  9. 9. A-5. Berisha H., Slavković R. (Belgrade – Serbia), Jegeš M. (Novi Sad – Serbia), Matić M., Lutovac B. (Tivat – Montenegro) ENVIRONMENTAL SECURITY IN THE SPHERE OF ECONOMIC SECURITY 104 A-6. Bilalović B., Antić E. (Travnik - Bosnia and Herzegovina), Pljakić B. (Novi Pazar – Serbia), Bilalović A. (Belgrade – Serbia) A MULTIPLE APPROACH IN CHOOSING BREAD PRODUCTS IN NUTRITION 111 A-7. Biočanin B. (Kruševac – Serbia), Dejanović M. (Niš – Serbia), Fetahović Z. (Brčko – Bosnia and Herzegovina), Biočanin M. (Banja Luka - Bosnia and Herzegovina) ENVIRONMENTAL SAFETY IN SPORTS FACILITIES 119 A-8. Biočanin R. (Novi Pazar – Serbia), Dizdarević A. (Novi Pazar – Serbia), Lutovac B., Jovanović M. (Tivat – Montenegro), Badić M. (Brčko - Bosnia and Herzegovina) ENVIRONMENTAL BIO-INDICATORS OF THE QUALITY SYSTEM OF ECO- MONITORING 129 A-9. Bogavac-Cvetković N., Pavlović R., Cvetković T. (Belgrade – Serbia) STRATEGIC IMPORTANCE OF INNOVATION IN SMALL AND MEDIUM ENTERPRISES IN THE ERA OF INFORMATION TECHNOLOGY 137 A-10. Borovčanin J. (Kruševac – Serbia), Dimitrijević S. (Užice – Serbia), Dragaš M., Tesić M. (Travnik - Bosnia and Herzegovina), Aničić Lj. (East Sarajevo - Bosnia and Herzegovina) RECYCLING WASTE WITHIN ENVIRONMENTAL SUSTAINABILITY URBAN ENVIRONMENT 145 A-11. Brnjaš Z., Ćurčić M., Dedeić P. (Belgrade – Serbia) SOCIO-ECONOMIC ASPECT OF HAZARDOUS CHEMICALS ENVIRONMENTAL IMPACTS 156 A-12. Cvejić R., Šćekić V., Cvejić S. (Belgrade – Serbia) EUROPEAN ECONOMY RECOVERY AND DEVELOPMENT FORECAST 165 A-13. Čeganjac Z. (Aranđelovac – Serbia), Đuričić M., Lutovac M., Bojović G. (Belgrade – Serbia) NATURAL ENVIRONMENT RESOURCES AND THEIR IMPACT ON TOURISM ORGANIZATION OF MODERN TIMES 173 A-14. Čestić N., Parojčić D., Lutovac N., Pavićević A. (Tivat – Montenegro) DRIVE FUEL OF THE FUTURE 179 A-15. Čuturić S., Lutovac M., Đuričić M., Đurović Ž. (Belgrade – Serbia), Ilić L. (Tivat – Montenegro) THE POSSIBILITY OF ORGANIZING RECYCLING OF SCRAP TIRES, AND SOLUTIONS: MANAGEMENT OF THE RUBBER WASTE 185 A-16. Doljanica S. (Kragujevac – Serbia), Momčilović O. (Belgrade – Serbia), Rajaković V. (Novi Sad – Serbia) INTEGRATED MODEL FOR TECHNOLOGY MANAGEMENT PRACTICES (TMP) 190 A-17. Đokić N., Dobričanin S. (Kosovska Mitrovica – Serbia) MODELING OF ORGANIZATIONAL STRUCTURE AS A STRATEGIC ELEMENT OF THE ENTERPRISE ADAPTING TO CHANGES IN THE ENVIRONMENT 197 A-18. Gajić I., Đukić M. (Belgrade – Serbia), Bulatović D. (Herceg Novi – Montenegro), Ostojić B. (Belgrade – Serbia) INFORMATION TECHNOLOGIES IN EDUCATION AND SCIENCE 203 A-19. Imamović M. (Travnik - Bosnia and Herzegovina), Biočanin R. (Novi Pazar – Serbia), Obradović S. (Travnik - Bosnia and Herzegovina), Đurović Ž. (Belgrade – Serbia) CIRCULAR ECONOMY IN CITIES TO THE IMPLEMENTATION OF INNOVATION ECO-SYSTEM SECURITY 212 A-20. Ivanović Z., Živković T. (Belgrade – Serbia), Mukhtar Megraf A.S. (Bani Walid - Libya) ISSUE OF STATE AGENCIES JURISDICTIONS IN THE CYBERCRIME AREA IN REPUBLIC OF SERBIA 222 X
  10. 10. A-21. Joksić I., Matijašević-Obradović J. (Novi Sad – Serbia) INFORMATION SECURITY 232 A-22. Jonev K., Lutovac N. (Tivat – Montenegro) PROTECTION OF CYBER SPACE THROUGH UNITED NATIONS CHARTER 237 A-23. Jovanov G., Radovanović R. (Belgrade – Serbia), Adamović Ž (Zrenjanin – Serbia) INTRODUCTION OF MAINTENANCE FUNCTIONAL PERFORMANCE INDICATORS STANDARD 244 A-24. Jovanov G., Radovanović R. (Belgrade – Serbia), Adamović Ž (Zrenjanin – Serbia), Ilić B. (Zvornik – Serbia) CRIME IDENTIFICATION GAS PIPELINE CAUSED BY THE POWER EFFECTS OF THE ENVIRONMENT 254 A-25. Jovanović J., Stevović S. (Belgrade - Serbia) SUSTAINABLE ECO MATERIALS AND RENEWABLE INNOVATIONS APPLIED IN CIVIL ENGINEERING 262 A-26. Kablar N., Kvrgić V. (Belgrade - Serbia) MATHEMATICAL MODEL, CONTROL AND SIMULATION OF 2 DOF ROBOT MANIPULATOR 270 A-27. Kanalić E. (Belgrade - Serbia), Muslić M., Biočanin J. (Travnik – Bosnia and Herzegovina), Radoman K. (Tivat – Montenegro) ORGANIC FOOD SAFETY IN REGION'S SUSTAINABLE DEVELOPMENT 277 A-28. Lutovac M. (Belgrade – Serbia), Ketin S. (Novi Sad – Serbia), Biočanin R. (Novi Pazar – Serbia), Mitić Z. (Požarevac – Serbia) UNCONTROLLED FIRES IN LANDFILLS AND ECOLOGICAL MODELING OF POLLUTANTS IN THE ENVIRONMENTAL MONITORING SYSTEM 286 A-29. Маркович Н., Милетич Л. (Нови Сад – Сербия), Чурчич Р. (Ниш – Сербия), Чутурич С. (Белград – Сербия), Грбич В. (Сремски Каролвци – Сербия) РОЛЬ ПОСТАВЩИКА ЛОГИСТИКИ В ЦЕПОЧКЕ ПОСТАВОК 299 A-30. Mihajlović V. (Leposavić - Serbia), Katanić Z. (Belgrade - Serbia) GENERATING CREATIVE ALTERNATIVES IN DECISION-MAKING IN INDUSTRIAL MANAGEMENT 308 A-31. Miletić Lj. (Novi Sad – Serbia), Ćurčić R. (Niš – Serbia), Ničić M. (Novi Sad – Serbia), Draganović M. (Belgrade - Serbia) APPLICATION OF CONCEPT OF CSR IN THE FINANCIAL SECTOR OF SERBIA THROUGH THE BUSINESS PROJECT OF PRESERVING THE ENVIRONMENT 312 A-32. Miletić Lj., Ničić M. (Novi Sad – Serbia), Ćurčić R. (Niš – Serbia), Milić S. (Belgrade - Serbia), Dimitrijevć B. (Tivat – Montenegro) THE INFORMATION TECHNOLOGIES ON THE VALUE CHAIN AND INCREASE THE COMPETITIVENESS OF ENTERPRISES 320 A-33. Miljković Lj., Gijić N., Đuričić M., Lutovac M., Karavelić D. (Belgrade - Serbia) ENERGY EFFICIENCY – MODERN AGE IMPERATIVE 327 A-34. Mohači T., Lutovac M. (Belgrade - Serbia), Jovanović I., Pavićević A. (Tivat – Montenegro) CROWDSOURCINGON SOCIAL NETWORKS 334 A-35. Perić V. (Brčko - Bosnia and Herzegovina), Biočanin R. (Novi Pazar – Serbia), Matić M. (Tivat – Montenegro), Prorojčić D. (Novi Pazar – Serbia) HEAVY METAL TOXICITY AND THE EFFECTS ON HUMAN HEALTH 342 A-36. Pljakić B., Međedović A., Zejnelagić S. (Novi Pazar – Serbia), Maksimović J. (Niš – Serbia), Bajin Z. (Novi Pazar – Serbia), Međedović A. (Belgrade - Serbia) VALUATION OF MOTORIC ABILITIES STRUCTUREOF STUDENTSACCORDING TO THE STANDARDS AT THE END OF PRIMARY SCHOOL EDUCATION 355 A-37. Почивалов К.В., Юров М.Ю., Мизеровский Л.Н. (Иваново – Россия) ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ПОЛИОЛЕФИНОВЫХ ПОРОШКОВ РАСТВОРНЫМ СПОСОБОМ 363 XI
  11. 11. A-38. Подвальный С.Л., Васильев Е.М. (Воронеж – Россия) БИОЛОГИЧЕСКИЕ ПРИНЦИПЫ МНОГОАЛЬТЕРНАТИВНОГО УПРАВЛЕНИЯ КРИТИЧЕСКИМИ ОБЪЕКТАМИ 370 A-39. Prlja D., Korać V., Gasmi G. (Belgrade - Serbia) NEW INFORMATION TECHNOLOGIES AND LIFELONG LEARNING 376 A-40. Radoman K. (Tivat – Montenegro), Miletić Lj., Lutovac M. (Belgrade - Serbia), Goryunova V.V. (Penza – Russia) INTERDISCIPLINARY PROPERTIES OF ONTOLOGY AT CREATION OF CENTERS OF THE MEDICAL DATA 382 A-41. Radovanović R., Jovanov G. (Belgrade - Serbia), Adamović Ž (Zrenjanin – Serbia) APPLICATION M2M- TECHNOLOGIES FOR THE DIAGNOSIS OF WELDS 387 A-42. Radun V., Lutovac M. (Belgrade - Serbia), Ćurčić R. (Novi Sad – Serbia), Klarić D. (Herceg Novi – Montenegro), Jerotijević Z. (Belgrade - Serbia) ESTABLISHING GREEN ECONOMY AS A MODEL OF SUSTAINABLE ECONOMIC DEVELOPMENT IN THE GLOBAL CRISIS ERA 397 A-43. Rajaković J. (Šabac - Serbia), Bejatović G. (Belgrade - Serbia), Doljanica D. (Herceg Novi – Montenegro) OVERVIEW OF INTERNATIONAL FINANCIAL INSTITUTIONS 403 A-44. Rakočević V. (Podgorica – Montenegro) CRIMINAL LAW PROTECTION OF THE ENVIRONMENT 413 A-45. Ristić K. (Belgrade – Serbia), Lutovac B. (Tivat – Montenegro), Kusovac S. (Herceg Novi – – Montenegro) MANAGEMENT OF SUSTAINABLE DEVELOPMENT AND ENVIRONMENTAL MANAGEMENT - THE ECONOMIC ASPECT 418 A-46. Shkunca D., Vukasović V., Lutovac M. (Belgrade – Serbia) YOUTH EDUCATION FOR SUSTAINABLE DEVELOPMENT AND GREEN SKILLS: KEY FACTORS FOR GLOBAL CHANGE 426 A-47. Simić B., Gardašević M. (Belgrade – Serbia), Lutovac N., Jonev K. (Tivat – Montenegro) ECOLOGICAL SAFETY 430 A-48. Sremac S. (Bačka Palanka – Serbia), Ivković S. (Belgrade – Serbia) EFFECT OF MINERAL FERTILIZER ON THE ENVIRONMENT 434 A-49. Subotić M. (Doboj - Bosnia and Herzegovina), Anđelković D. (Kosovska Mitrovica – Serbia), Marić B. (Doboj – B&H), Josevski Z. (Bitola – Macedonia) PCE IN THE ANALYSIS MODELS FOR THE VEHICLE COUNT AT THE TWO LANE ROADS 438 A-50. Шалимов Ю.Н., Макаров П.Н. (Воронеж – Россия) О ПОЛОЖЕНИИ ЭЛЕМЕНТОВ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ С ИХ СПОСОБНОСТЬЮ ВЗАИМОДЕЙСТВИЯ С ВОДОРОДОМ 449 A-51. Шалимов Ю.Н., Соколов С.А. (Воронеж – Россия), Лутовац М. (Белград – Сербия), Епифанов А.В., Макаров П.Н. (Воронеж – Россия) ЭНЕРГЕТИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ ПРИ ФОТОСИНТЕЗЕ В БИОЛОГИЧЕСКИХ СИСТЕМАХ 453 A-52. Talijan M. (Belgrade – Serbia), Lutovac N. (Tivat – Montenegro), Jovanović I., Mitar Lutovac M. (Belgrade – Serbia) IMPORTANCE OF SAFETY CULTURE IN THE ENVIRONMENTAL PROTECTION 458 A-53. Tucović M., Marković S., Tucović D. (Belgrade – Serbia), Vukasović V., Tairova M. (Tivat – Montenegro) DEVELOPMENT OF TOURISM IN PROTECTED NATURAL AREAS (FOR EXAMPLE „TARA“ NATIONAL PARK) 466 A-54. Tucović M., Tucović D. (Belgrade – Serbia), Bojović G., Macanović G. (Tivat – Montenegro) NEW IT TRENDS IN HOSPITALITY INDUSTRY 473 XII
  12. 12. XIII A-55. Zorić O. (Belgrade – Serbia), Mlađenović M., Stanković V., Panajotov A. (Tivat – Montenegro) HESPERIA METHOD: IMPROVING BIO-ENERGY CONDITIONS IN THE GREENHOUSE PRODUCTION OF VEGETABLES 484 A-56. Звягинцева А.В., Шалимов Ю.Н. (Воронеж – Россия), Лутовац М. (Белград – Сербия) ОСОБЕННОСТИ ПОВЕДЕНИЯ ВОДОРОДА В МЕТАЛЛАХ И СПЛАВАХ, ПОЛУЧЕННЫХ ЭЛЕКТРОЛИЗОМ, И ВОЗМОЖНОСТИ ИХ ПРИМЕНЕНИЯ В АЛЬТЕРНАТИВНЫХ ИСТОЧНИКАХ ЭНЕРГИИ 492
  13. 13. PLENARY SESSION (INVITATION PAPERS)
  14. 14.  
  15. 15. 3rd International Conference New Functional Materials and High Technology NFMaHT-2015 29-30 June 2015, Tivat, Montenegro Plenary and Invitation Paper ОБ ИСПОЛЬЗОВАНИИ ВОДОРОДНЫХ СИСТЕМ ДЛЯ ЭНЕРГООБЕСПЕЧЕНИЯ ОБОРУДОВАНИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И СТАЦИОНАРНЫХ ЭНЕРГОУСТАНОВОК Ю.Н. Шалимов1 , С.А. Соколов1 , М. Лутовац2 , П.Н. Макаров1 1 Воронежский государственный технический университет, ОАО НПП «Луч», Воронеж, РОССИЯ 2 Факультет бизнеса и промышленного менеджмента, Белград, СЕРБИЯ, E-mail: gsmmitar@gmail.com Поскольку к дублирующим системам энергообеспечения летательных аппаратов предъявляются требования повышенной надежности, то наиболее перспективным мы считаем применение аккумуляторов топлива, как источника энергии на базе гидридных систем хранения водорода, т.к. они обладают высокой энергобезопасностью и меньшей энергозатратностью, по сравнению с другими системами аккумулирования водорода (сжиженный водород, балонное хранение компримированного газа др.). На рисунке 1 представлена структурная формула гидрида алюминия, из которой следует, что молекула AlH3 построена по типу бензольного кольца, в котором образование водородных связей обуславливает эту структуру. Иногда, подобные структуры называют неорганическим бензолом. В нашем случае образование таких структур не может быть обеспечено в связи с тем, что наибольшая вероятность взаимодействия водорода с металлом возникает по дефектам структуры [1]. Рис. 1: Структура гидрида алюминия Наличие таких дефектов может быть обнаружено методом внутреннего трения [2]. Механизм взаимодействия атомов водорода при возникновении их диффузии под действием температуры представлен на рис. 2. 1
  16. 16. Рис. 2: Механизм изменения концентрации водород под действием внешних сил Общее количество водорода, которое может быть растворено в образце можно определить, по Закону эквивалентов, приравняв число моль эквивалентов гидрида и газообразного водорода, откуда получим: (1) где - Объем водорода, - эквивалентный объем водорода, и соответственно массы гидрида алюминия и эквивалентная масса гидрида алюминия. Учитывая, что материал накопителя представляет собой фольгу с каналами накопления, обеспечивающими развитие поверхности, при зарядке и разрядке необходимо учесть наличие материковой части фольги, обеспечивающей ее прочностные характеристики. Примем коэффициент прочности (kp) примерно равным 0,8. Кроме того, необходимо учесть пористость материала за счет эффекта создания равнодоступности электролита при электрохимической "закачке" водорода, поэтому общая масса материала уменьшится еще примерно на 20% (коэффициент травления kT). Третьим фактором редуцирования идеального объема является невозможность создать полностью дефектную структуру гидрида алюминия, что повлечет за собой снижение рабочего объема материала примерно еще на 20% (коэффициент совершенства формы kC) Рис. 3. Рис. 3: Морфология структуры электрода водородного аккумулятора Поэтому реальные объемы могут быть определены по формуле: ; (2) При учете этих факторов, эффективный объем экстрагированного водорода уменьшится примерно на 50%. Тем не менее, реальный объем водорода при гидридном хранении, в сравнение с компримированным водородом, позволяет создать системы питания, дающие возможности не только для резервирования мощностей, но и позволяющие его использования в качестве основного топлива. 2
  17. 17. Из формулы (2) следует, что среднее количество водорода в образце при гидридном хранении составляет не менее 900 литров на кг веса аккумулятора. На рис. 4 представлена зависимость внутреннего трения Q-1 от температуры T образца из алюминия, на котором обнаруживается пик, соответствующий максимуму водородного насыщения, но при этом, следует иметь ввиду, что другие частоты, соответствующие пикам внутреннего трения интегрированы в фоне зависимости Q-1 =f(T) и поэтому не проявляются на этой зависимости. Рис. 4: Температурная зависимость внутреннего трения алюминия подвергнутого наводороживанию электрохимическим способом в течение 450 мин при катодной плотности тока 5 А/дм2 Поскольку насыщение образца водородом осуществлялось электрохимическим методом, то представляло интерес изучить концентрацию водорода по отдельным участкам электрода т.к., она может изменяться вследствие проявления эффектов тепловыделения при различных электрохимических процессов. Такое характерное изменение обусловлено тем, что на углах образца реализуется максимальное значение плотности тока и, вследствие этого максимумы эффектов тепловыделение. Согласно правилу Соррэ, наиболее подвижные, легкие частицы устремляются в горячие области, а наиболее тяжелые в холодные. Поэтому, максимальная концентрация водорода наблюдается на участках 1 и 5. Рис. 5. Рис. 5: Диаграмма содержания водорода по элементарным участкам электрода Водород имеет примерно в 2,8 раза большую удельную теплоту сгорания, чем керосин (12·107 Дж/кг против 4,3·107 Дж/кг), но объемная теплота сгорания, даже у жидкого водорода, в 4 раза меньше. Вследствие этого, при том же потребном запасе энергии, объем топливных баков на самолете должен быть в 1,5 раза больше, чем объем баков для керосина. Однако, по оценкам 3
  18. 18. специалистов, самолет на жидком водороде может быть на 25% легче и на 30% дешевле, его двигатели будут более долговечными и надежными, чем у самолета, работающего на керосине, при одинаковой грузоподъемности и дальности полета, причем, при абсолютной экологичности выхлопа. На рисунке 6 приведен пример компоновки реактивного самолета, использующего сжиженное водородное топливо. Баллоны с горючим, находятся внутри фюзеляжа самолета, что накладывает серьезные ограничения на изменение конструкции планера. Однако, использование в качестве емкостей хранения горючего металлогидридных систем, позволяет сделать их более компактными, и не несет жестких ограничений на их форму и место расположения. Рис. 6: Компоновка самолетов на сжиженном водородном топливе Современная концепция энерговооруженности самолетов на водородом топливе подразумевает использование трех независимых двигателей на борту, работающих на совершенно различных принципах. Этап взлета и посадки происходит как у обычных самолетов с использование турбореактивных двигателей. На высоте порядка 5 километров происходит включение реактивных двигателей. Их мощности хватает для крутого подъема до высоты 23 километров и набора скорости, достаточной для обеспечения работы гиперзвуковых прямоточных двигателей. С помощью этих двигателей происходит основная часть полета на скорости от 4 Max и выше. Водородный гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД) рассматривается сегодня как основа комбинированных силовых установок для гиперзвуковых гражданских летательных аппаратов. Перед завершением полета, после выключения всех двигателей, самолет снижается до высоты 10 километров, где снова запускаются турбореактивные двигатели, на которых выполняется дальнейший спуск и посадка. Идея использования комбинированных двигательных установок, работающих на водороде не нова и использовалась, в том числе, в комплексе с компактными ядерными реакторами, например при разработке российского воздушно космического самолета М-19 КБ Мясищева в 70-х годах прошлого века. Комбинированная двигательная установка включала в себя ядерный маршевый ракетный двигатель с тягой около 300 т, 10 двухконтурных турбореактивных двигателей с тягой каждого порядка 25 т и ГПВРД с впрыском топлива под днище (Рис. 7). Рис. 7: Воздушно-космический самолет М-19 взлетной массой 500 т. 4
  19. 19. Отдельного упоминания заслуживает и Ядерный Ракетный Двигатель РД-0410, созданный в 60- 80-е годы прошлого века в воронежском в КБ Химавтоматики, также использующий жидкий водород в качестве рабочего тела [3]. Этот небольшой двигатель тягой 3,6 тонны показал, что в отличие от изделий американских коллег, можно не только создавать мощные ЯРД, но и заставить их работать с уникально большим удельным импульсом и на гораздо более высоких температурах, обладая при этом предельно "чистым" выхлопом (Рис. 8). Рис. 8: Принципиальная схема ядерного ракетного двигателя: 1 - бак с жидким водородом; 2 - насос; 3 - турбина; 4 – тепловыделяющие элементы; 5 – выпуск газов из турбины; 6 - сопло; 7 - стержниуправления; 8 - защитный экран Поскольку для стационарных установок использование легких конструкционных материалов не является обязательным, то для хранения водорода предпочтительнее использовать металлы, не обладающие высокой стоимостью, но достаточно хорошо распространенные в природе. Кроме того, обязательным условием является сохранение в металлах устойчивых дефектов структур, при изменении температуры экстракции водорода в довольно широких пределах. например, от 150 до 2500 . По этим признакам наиболее предпочтительно использовать металлы и сплавы на основе никеля, поскольку этот металл устойчив в водных щелочных растворах, что необходимо при процессах электролитического аккумулирования водорода. В тоже время, сплавы никеля облают достаточно хорошим магнитострикционным эффектом, а это позволит при соответствующих конструкторских доработках увеличить эффективность зарядных устройств, т.е. повысить скорость и степень аккумулирования водорода. Получение водорода для работы промышленных энергоустановок производится на специальных станциях гидрирования общий вид которой представлен на рис. 9. Рис. 9: Комплекс водородной энергетики 5
  20. 20. 6 Для получения водорода на этих станциях производится пиролизное разложение метана до свободного водорода и ацетилена по схеме: После газоразделительной мембраны, водород используется для питания первичного элемента энергоустановки (фактически реактора), где водород, соединяясь с атмосферным кислородом, образует рабочее тело - горячий пар, приводящий в движение вертикальную турбину, связанную с трем секциями электрических машин. Поскольку скорости вращения достаточно высоки, то для обеспечения надежной работы необходимо применить специальный вид стабилизации положения ротора турбины, используя методы электромагнитной стабилизации. Подшипник, фактически работает в условиях трениях о воздух, но поскольку токи стабилизации весьма значительны, то необходимо использовать систему сверхпроводников. Это вполне реально, т.к в комплексе установки присутствуют все криостатные системы (Рис. 10). Рис. 10: Принципиальная схема высокоскоростных водородных генераторов Скорости вращения водородно-воздушных турбин составляют примерно 20 000 оборотов в минуту, то для получения токов промышленной частоты необходимо использовать систему преобразователей. Отработанный пар с параметрами примерно 40 Атм давления и температурой 300 градусов Цельсия используется как рабочее тело для вращения системы турбина - генератор, назначение которой получение энергии промышленной частоты. Литература [1] Гранкин Э.А. Влияние условий электролиза и термической обработки на внутреннее трение и коррозионное стойкость электролитического хрома. Дис. канд. технических наук. Воронеж: ВПИ, 1973. - 116 стр. [2] Постников В.С. Внутреннее трение в металлах. М.: Металлургия,1969. - 332 стр. [3] Демьяненко Ю.Г., Конюхов Г.В., Коротеев А.С., Кузьмин Е.П., Павельев А.А. Ядерные ракетные двигатели. ООО "Норма-Информ", 2001. - 416 стр.
  21. 21. 3rd International Conference New Functional Materials and High Technology NFMaHT-2015 29-30 June 2015, Tivat, Montenegro Plenary and Invitation Paper CONTEMPORARY MATERIALS FOR PHOTOVOLTAIC SOLAR ENERGY CONVERSION Dragoljub Lj. Mirjanić1 , Tomislav M. Pavlović2 , Dragana D. Milosavljević2 1 Academy of Science and Arts, Bana Lazarevića 1, 7800 Banja Luka, Republic of Srpska, BOSNIA AND HERZEGOVINA, e-mail: mirjanicd@gmail.com 2 University of Niš, Faculty of Sciences and Mathematics, Višegradska 33, 18000 Niš, SERBIA, e-mail: pavlovic@pmf.ni.ac.rs, dragana82nis@yahoo.com Summary: The paper introduces basic information on physical characteristics of contemporary materials used in photovoltaic solar energy conversion. Special attention is drawn to physical characteristics of the monocrystalline, polycrystalline, amorphous silicon, GaAs, CdTe, CIS, Cu2S/CdS and organic solar cells. Further on the paper provides information on the installed PV solar plants in Serbia and the Republic of Srpska. Keywords: solar radiation, solar cells, PV solar plants, Serbia, Republic of Srpska. 1. Introduction The Sun is the most important source of energy for life on Earth. The power from the Sun intercepted by the Earth is about 1.8 × 1011 MW, which is many times larger than the present rate of all the energy consumption. Solar energy is one of the best renewable energy sources with least negative impacts on the environment. Solar energy can be used for the generation of thermal and electrical energy. One of the most popular techniques of solar energy generation is the installation of photovoltaic (PV) systems using sunlight to generate electrical power. The world has been increasingly investing in the research of thermal and photovoltaic solar energy conversion to obtain better and cheaper materials and components. This paper provides an overview of the materials used for the photovoltaic solar energy conversion and the current application of PV solar plants in Serbia and the Republic of Srpska [1-5]. 2. Solar cells Photovoltaic solar radiation conversion is the process of converting solar radiation energy into the electrical energy. The photovoltaic conversion of solar radiation is based on the internal photoelectric effect in the p-n junction and takes place in solar cells made of semiconductor materials. Solar cell in electrical circuit is a source of direct current. Efficiency (rate of useful activity) of the solar cell is expressed by the ratio of the generated energy and the total energy of solar radiation incidence on the solar cell. The efficiency of solar cells depends on several factors including: reflection on the surface of the solar cell, losses in infrared and ultraviolet area, losses due to the thickness of the solar cell, losses due to voltage factor, losses due to recombination and losses in the serial resistance. Finally, it should be noted that the efficiency of the solar cells essentially depends on the band gap in the semiconductor material which they are made of. Solar cells are mostly formed from silicon. Depending on the silicon structure solar cells can be divided into: monocrystalline, polycrystalline and 7
  22. 22. amorphous silicon solar cells. Beside above mentioned GaAs, CdTe, CIS, Cu2S/CdS, etc. solar cells can be found on the market as well [1,2,5-11]. 2.1. Monocrystalline silicon solar cells Monocrystalline silicon solar cell has a front electrode, antireflection coating, n-layer, p-n bond, p- layer and a back electrode. In order to obtain semiconductor of n-type silicon is doped with phosphorous and to obtain semiconductor of p-type silicon is doped with boron. Thickness of p-layer is 300 m, and of n-layer 0.2 m. For antireflection coating one uses materials with refraction index of 1.5-2. These materials comprise SiO, SiO2, TiO, TiO2 Ta2O3, etc. Depending on the antireflection coating material one can manufacture monocrystalline solar cells of different colors. Metal contacts are formed by vacuum vaporing of the corresponding materials on Si plate. To this purpose one usually uses Ti/Pd/Ag coating. Monocrystalline silicon solar cell fabrication procedure implies monocrystalline silicon plate preparation, plate doping, back side plate preparation, contacts metal plate, antireflection coating overlay. Monocrystalline silicon plates thickness of 200–300 μm are sliced. After slicing plates are polished and cleaned in a diluted solution in hydrochloric and nitric acid. To obtain n type semiconductor silicon is phosphorous doped and to obtain p type semiconductor silicon is boron doped. Following methods are applied for silicon doping and p–n junction formation: diffusion from gaseous phase, diffusion from solid state, epitaxial growth of the doping layer, ion inplantation, etc. During monocrystalline silicon formation applying diffusion from gaseous phase method boron is added to silicon melt so that the inner part of the monocrystalline silicon plate is a p type semiconductor. Silicon plates are placed in the quartz tube at the temperature of 800–900°C. Under the influence of the gas introduced into the melt POCl3 evaporates and phosphorous goes into the quartz tube in which by diffusion it is built into the surface part of the silicon plates. After twenty minutes concentration of phosphorous in the surface part of the monocrystalline silicon plates is significantly higher than the boron concentration so that n type semiconductor is formed on the surface of the plates. Elimination of n layer from the rear and sides is performed by the chemical and mechanical processes. Since rear side of the monocrystalline silicon plate is far from the p–n junction and thus far from the influence of the electric field, a problem of added charging on it occurs. This is resolved in such a way that the rear side of the monocrystalline silicon plate is doped more than the front side. If the base material is of the p–type rear side will be more doped (p+ ) so that a cell of n+ pp+ type is obtained, better known as BSF cell, or the cell with the field against the rear side. Metal contacts are formed by vacuum vaporing of suitable metals on the monocrystalline silicon plate. To this purpose one usually uses Ti/Pd/Ag coatings. First Ti coating is applied on the silicon which exhibits good adhesion with silicon, then Pd coating is applied over it and finally Ag coating is overlayed. In order to improve the contact between the monocrystalline silicon plate and Ti/Pd/Ag coatings and to provide as small contact resistance of the metal contact as possible the plate with the metal contact is for some time exposed to the temperature of 500–600°C. Antireflection coating is used to reduce reflection and the speed of surface recombination charging. Due to a high silicon refractive index (3–6) reflection of solar radiation from the monocrystalline silicon solar cell is 30–60%. For antireflection coating materials with refractive index of 1.5–2 can be used. These materials comprise: SiO, SiO2, TiO, TiO2, Ta2O3, etc. Depending on the antireflection coating material one can produce monocrystalline silicon solar cells of different colors. Monocrystalline silicon solar cell is sensible to wavelengths of 0.4–1.1 μm and maximum of its sensitivity is within the range of 0.8–0.9 μm. Maximum of the spectral sensitivity of the monocrystalline silicon solar cell does not coincide with the maximum of spectral distribution of the sun irradiation. This is the very reason why monocrystalline silicon is not an ideal material for the production of solar cells. Commercial monocrystalline silicon solar cells have the efficiency of 15% and laboratory ones around 24% [1,2,5-11]. 2.2. Polycrystalline silicon solar cells Polycrystalline silicon solar cells consist of polycrystalline upper p-n junction, anti-reflection coating and front and back electrode. Polycrystalline silicon solar cells are made of polycrystalline silicon of 8
  23. 23. semiconductor’s purity in wafers obtained by different methods: growing wafer with defined edge, dendrite networking, horizontal, vertical and oblique wafer, growing silicon on ceramics, rolling mold, etc. Growing wafer with defined edge method is based on the effect of the solution surface voltage which rises molten silicon in the wafer puller. During introduction of the monocrystalline seed into the melt on the contact of the seed and melt a meniscus is formed with clearly defined upper and lower edge. Polycrystalline silicon wafer is formed by moving the crystal seed upwards at constant speed of 10 cm/min and cooling of the wafer thickness of 0.02 cm and width up to 10 cm. The obtained wafer is sliced into desired dimensions and used for the polycrystalline silicon solar cells fabrication. Preparation of the polycrystalline wafer for solar cells fabrication is performed by its surface chemical etching, whereby on the wafer surface pyramid structure is formed with pyramid height of 10 mm. Thanks to the pyramide surface structure of the polycrystalline silicon incident light is multiple reflected and absorbed on it. Using adequate anti-reflection coating losses in polycrystalline silicon solar cells efficiency caused by reflection from its surface are highly reduced. Polycrystalline silicon grains size can be size from several micrometers up to several milimeters. In polycrystalline silicon solar cells zone limits between polycrystalline material graines are very important. Surface between two graines is acting as a serial resistance which is resisting electron movement. On the boundary zone between graines there is an electric field similar to the field existing on the boundary of the metal–semiconductor. Grain boundaries can be seen as defects in silicon crystal with energy levels in forbidden zone. These levels are recombination centres for the electrones which are thrown out from the atom under the influence of the incident solar radiation. Doping of polycrystalline silicon, forming of junction, deposition of electric contacts and anti- reflection coating are performed similar to monocrystalline silicon solar cells process. Minority charge carriers (vacancies) formed near p–n junction recombine on it and those formed near grain boundary recombine on the grain boundary. Minority charge carriers do not contribute to the solar cell current. In order to reduce current leakage length of grain boundaries from the front to the back of the solar cell should be greater than the length of diffusion barrier of the minority charge carrier. Due to the diffusion of impurities at the grain boundaries during the formation of p-n junction, grain boundaries are detours for the movement of electric charges through the p-n junction. In order to achieve a significant reduction in current leakage that may occur due to the recombination of charges at the grain boundaries, grains should be a few millimeters long. Independently of this, the thickness of the commercial polycrystalline silicon solar cell is less than 1 mm. Unlike the monocrystalline silicon having a crystal structure polycrystalline silicon is composed of several small "crystallites" - grains. The boundaries between the grains hinder the movement of electrons, which leads to their recombination with vacancies and reduction of the output power of this type of solar cells. Polycrystalline silicon solar cells are fabricated in different shapes and dimensions. Commercial polycrystalline silicon solar cells have efficiency of 14% and laboratory ones 18% [1,2,5- 11]. 2.3. Amorphous silicon solar cells Amorphous silicon solar cells can be formed on glass substrate, plastic films, stainless steel and aluminum. Amorphous silicon exhibits higher coefficient of solar radiation absorbtion than monocrystalline silicon thus requiring remarkably less material to manufacture amorphous silicon solar cells. Amorphous silicon solar cells thickness is smaller than 1 μm. Amorphous silicon solar cells consists of upper p-layer (0.008 μm), i- layer (neutral layer thickness of 0.5-1 μm) and bottom n- layer (0.02 μm). This solar cell structure is called p-i-n structure. Considering that the upper p-layer is thin and relatively transparent, a part of solar radiation goes directly through it and will create free electrons in the i- layer. In this case p and n- layers create electric field through i- layer which causes movement of electrons through this layer. Amorphous silicon solar cells on glass substrate can be nontransparent and semitransparent. Nontransparent amorphous silicon solar cells on glass substrate consists of glass substrate, transparent SnO2 electrode, p-i-n layers and Al electrode. Thickness of the amorphous silicon solar cells on glass 9
  24. 24. substrate ranges from 0.7-1.00 μm, and the thickness of p-i-n layers ranges from 0.5–0.7 mm. Amorphous silicon solar cells on glass substrate have the highest sensitivity to light with wavelengths from about 400 nm to 700 nm where the solar radiation intensity is the highest. Sensitivity of the amorphous silicon solar cell on glass substrate is rapidly decreasing with the increase of wavelength above 600 nm. Semitransparent amorphous silicon solar cell on glass substrate according to their structure are equal to the nontransparent amorphous silicon solar cells on glass substrate. Japanese company Sanyo manufactures semitransparent amorphous silicon solar cells on glass substrate which absorb 30% of incoming solar radiation and the rest of solar radiation is used for the conversion into electrical energy. Amorphous silicon solar cells on plastic films consist of plastic film substrate with metal electrode on it above which there are amorphous silicon layers, transparent electrode, metal electrode and upper protective layer. Amorphous silicon solar cells on plastic film are flexibile, light and can be circuit bent at least in diameter of 5 cm. Amorphous silicon solar cells on stainless steel are composed of the stainless steel substrate coated by polymer isolation layer on which there are metal electrode and n-i-p layers and on the front side transparent SnO2 electrode. First amorphous silicon solar cell on chemically treated aluminum was formed in Japan in 1986. First amorphous silicon solar cell on anode oxidized aluminum was formed by B. Lalović and T. Pavlović with the associates in 1987. Amorphous silicon solar cells on aluminum are composed of Al substrate, Al2O3 isolation layer, Al electrode, n-i-p layers, transparent SnO2 electrode and transparent protective layer. Experimental studies have shown that the efficiency of the amorphous silicon solar cells does not depend on the substrate, but on the conditions and methods of n-i-p layers forming. Commercial amorphous silicon solar cells on glass substrate, plastic film and stainless steel have efficiency of 4-5%. Laboratory made amorphous silicon solar cells have efficiency up to 10%. Advantages of amorphous silicon for the production of solar cells as compared to the monocrystalline silicon are following: - amorphous silicon has higher coefficient of solar radiation absortion than monocrystalline silicon, - to manufacture amorphous silicon solar cells remarkably smaller quantity of material is needed as compared to the monocrystalline silicon solar cells, - amorphous silicon solar cells can be formed on glass substrate, plastic films or metal substrate on significantly larger surfaces than monocrystalline silicon solar cells surfaces, - semitransparent amorphous silicon solar cells on glass substrate are being increasingly used in practice. Disadvantages of amorphous silicon solar cells as compared to the monocrystalline and polycrystalline silicon solar cells are following: - amorphous silicon solar cells have smaller efficiency (5–7%) as compared to the efficiency of polycrystalline (14%) and monocrystalline Si solar cells (15%), - longer period of illumination causes some degradation of the optic and electric characteristics of the amorphous silicon solar cells. Since the upper limit of efficiency of the amorphous silicon solar cells is 16%, the researchers have a wide scope of research ahead to increase their efficiency [1,2,5-11]. Comparative view of monocrystalline, polycrystalline and amorphous silicon cells is given in figure 1. Fig. 1. Comparative view of monocrystalline, polycrystalline and amorphous silicon solar cells 10
  25. 25. 2.4. GaAs solar cells GaAs solar cells are fabricated from monocrystalline and polycrystalline GaAs. Due to the forbidden zone width of 1.45 eV, absorption coefficient ~105 cm–1 and melting point of 1238°C, GaAs represents an ideal material for the formation of solar cells. Nowadays, commercial GaAs solar cells are formed in two ways: by GaAs doping and heteroepitaxial deposition of AlAs or AlxGa1–x as from liquid or gaseous phase on the monocrystalline GaAs. Efficiency of the doped GaAs cells formed by heteroepitaxial deposition of AlAs or AlxGa1–x As is 28%. GaAs solar cells are thermo stabile and thus are used in photovoltaic systems with solar radiation concentrators. Efficiency of GaAs solar cells with concentrators ranges from 30– 35%. The biggest flaw of GaAs solar cells is their high cost [1, 2, 5-11]. 2.5. CdTe solar cells A layer of cadmium sulphide is deposited from solution onto a glass sheet coated with a transparent conducting layer of thin oxide. This is followed by the deposition of the main cadmium telluride cell by variety of techniques including close-spaced sublimation, vapor transport, chemical spraying or electroplating. CdTe solar cells have been used as low cost, high efficiency, thin-film photovoltaic applications since 1970. With the forbidden zone width of ~1.5 eV and the coefficient of absorption ~105 cm–1 , which means that a layer thickness of a few micrometers is sufficient to absorb ~90% of the incident photons, CdTe is almost an ideal material for solar cells manufacturing. CdTe solar cell is sensitive in the wavelength of 0.3–0.95 μm and maximum of its sensitivity is in the wavelength range of 0.7–0.8 μm. Laboratory CdTe cells have the efficiency of 16% and commercial ones around 8%. Great toxicity of tellure and its limited natural reserves diminish the prospective development and application of these cells [1, 2, 5-11]. 2.6. CIS solar cells The materials based on CuInSe2 that are of interest for photovoltaic applications include several elements from groups I, III and VI in the periodic table. CIS is an abbreviation for general chalcopyrite films of copper indium selenide (CuInSe2). CIS technology is a star performer in the laboratory with 19.5% efficiency demonstrated for small cells but has proved difficult to commercialize. Unlike other thin-film technologies, which are deposited onto a glass substrate, CIS technology generally involves deposition onto a glass substrate. An additional glass top-cover is then laminated to the cell/substrate combination. Present designs require a thin layer of CdS deposited from solution. Considerable effort is being directed to replacing this layer due to the issues associated with the use of cadmium, as previously noted. However, a long-term issue with CIS technology is one of the resources availability. All known reserves of the indium would only produce enough solar cells to provide a capacity equal to all present wind generators. CuInSe2 with its optical absorption coefficient exceeding 3·104 cm–1 at wavelengths below 1000 nm, and its direct band gap being between 0.95 eV and 1.2 eV, is a good material for solar cells. CIS solar cell is sensitive in the wavelength of 0.4–1.3 μm and maximum of its sensitivity is within the wavelength range of 0.7–0.8 μm. The efficiency of commercial CIS solar cells is about 8%. However, manufacturing costs of CIS solar cells at present are high when compared to silicon solar cells but continuing work is leading to more cost-effective production processes [1, 6-11]. 2.7. Cu2S/CdS solar cells Commercial Cu2S/CdS solar cells exhibit the efficiency of 5% and laboratory ones 10%, whereas a maximum theoretical efficiency is 16%. These solar cells are sensitive to oxygen and humidity [1, 2, 5-11]. 11
  26. 26. 2.8. Organic and polymer solar cells Organic and polymer solar cells are made of thin films of organic semiconductors (about 100 nm), such as polyphenylene vinylene and small-molecule compounds such as copper phthalocyanine (a blue or green organic pigment), and fullerenes and fullerene derivatives. Maximum efficiency of these solar cells is still low and is around 6.77% [1, 2, 5-11]. 2.9. PV solar power plants PV solar power plant denotes a plant using solar cells to convert solar irradiation into the electrical energy. PV solar power plant consists of solar modules, inverter converting DC into AC and transformer giving the generated electrical energy into the grid net. PV solar power plant is fully automatized and monitored by the applicable software. PV solar power plants mostly use solar modules made of monocrystalline and polycrystalline silicon and rarely modules made of thin film materials such as amorphous silicon, CdTe and CIS (Copper-Indium-Diselenide, CuInSe2). Efficiency of the monocrystalline silicon solar cells is 15%, of polycrystalline silicon is around 12%, of amorphous silicon is around 5% and CdTe and CIS is around 8%. Monocrystalline and polycrystalline silicon solar modules are more suitable for the areas with predominantly direct sun radiation, while solar modules of thin film are more suitable for the areas with predominantly diffuse sun radiation. Inverter is a device which converts DC generated by PV solar power plants of 12 V or 24 V into three phase AC of 220 V. Depending on the design inverter efficiency is up to 97%. When choosing inverter it is to bear in mind the output voltage of the solar modules array, power of the solar modules array, grid net parameters, managing type of the PV solar power plant, etc. PV solar power plants can use larger number of the inverters of smaller power or one or two invertors of greater power. Schematic view of the PV solar power plant is shown in Figure 2. Figure 2: Schematic view of the PV solar power plant PV solar power plant monitoring system comprises central measuring–control unit for the surveillance of the working regime. Monitoring system uses sensors and softwares to obtain the following data: daily, monthly and yearly production of the electricity, reduction of CO2, detailed change of the system parameters, recording of the events after the failure, monitoring of the meteorological parameters, etc. PV solar power plants in accordance with the power distribution systems legal regulations use transformers by means of which solar energy generated by PV solar power plant is given to the power grid. Practice shows that the energy efficiency of PV solar power plant annually decreases from 0.5-1%. Lifetime of PV modules depends on the solar cell technology used as well. For monocrystalline and polycrystalline silicon solar cells most manufacturers give a warranty of 10/90 and 25/80 which means: a 10-year warranty that the module will operate at above 90% of nominal power and up to 25 years above 80%. The practical lifetime of the silicon-made PV modules is expected to be at least 30 years. PV solar power plants represent environmentally clean source of energy. PV solar power plant components (solar modules, inverters, monitoring system, conductors, etc) are manufactured by 12
  27. 27. cutting edge, environmentally friendly technologies. PV solar power plants operate noiseless, do not emit harmful substances and do not emit harmful electromagnet radiation into the environment. PV solar power plant recycling is also environmentally friendly. For 1 kWh of PV solar power plant generated electrical energy emission of 0.568 kg CO2 into the atmosphere is reduced. Depending on climate conditions of given location fixed PV solar power plants, one-axis and dual– axis tracking PV solar power plants are being installed worldwide. Fixed PV solar power plants are used in regions with continental climate and tracking PV solar power plants are used in tropical regions [1, 2, 6-11]. 2.10. PV solar power plants in Serbia In the village of Matarova near Merdare, municipality of Kursumlija, on April 23, 2012 the Italian company Gascom, in cooperation with the local company Solar Matarova from Novi Sad began the construction of 2 MWp PV solar power plants (Fig.3). The construction of the PV solar power plant was finished on August 23, 2013, when a contract with EPS (a power distribution company) on the feed in tariff electrical energy selling, was signed. The plant is located on an area of 4 hectares, has 8100 polycrystalline solar modules and the total investment was € 3.6 million. PV solar park in the village Velesnica near Kladovo consists of two PV solar power plants, Solaris 1 and Solaris 2 (Fig.4). PV solar power plant Solaris 1, of 999 kWp, began to be constructed in July 2013 and was completed in November 2013 and was work commissioned on December 27, 2013. PV solar power plant Solaris 1 consists of polycrystalline silicon modules of 245 Wp, manufactured by Yingli Solar. PV solar power plant Solaris 2, of 999 kWp, began to be constructed in August 2014, was completed in October 2014, and was work commissioned in October 24, 2014. PV solar power plant Solaris 2 consists of polycrystalline silicon modules 250 Wp, manufactured by Yingli Solar. Between PV solar power plants Solaris 1 and Solaris 2 there is a transformer station 35/0.4 kV, rated power 2x1000 kVA, which allows the distribution of the entire electricity produced in the electrical distribution system. The PV solar park is located in an area of 4.5 hectares. The total solar modules area is 13600 m2 . The investment in PV solar power plants Solaris 1 and Solaris 2 amounted to 3 million Euros [1, 10-13]. Figure 3: PV solar power plant Matarova of 2 MWp Figure 4: PV solar park of 2 MWp in the village Velesnica near Kladovo 2.11. Small PV solar power plants Serbia has up to now installed more than 200 independent PV solar power plants of 1-60 kWp. Moreover, Serbia has installed several small rooftop PV solar power plants connected to the grid. List of companies which are designing and installing PV solar power plants in Serbia is given in Table 1. PV solar power plant Pupin of 50 kWp is installed on the roof of the main building of the Mihajlo Pupin Institute in Belgrade. It consists of 180 solar modules installed in 10 strings. Polycrystalline silicon solar modules are of the individual power of 280 Wp (Schutten Solar STP6-280 W). The PV solar power plant uses two types of inverters: two Schneider types of 15 kW and Refusol of 20 kW (to compare functioning of the different inverters). Construction of the PV solar power plant Pupin was started in April 2013, and it was connected to the grid network on September 20, 2013. PV solar power plant Pupin has received the status of the privileged energy producer on April 1, 2014. 13
  28. 28. Table 1: List of companies which are designing and installing PV solar power plants in Serbia Company PV solar power plant kWp Year Alfatec Ltd. in Nis On the building of the private company Domit in Leskovac 34.32 2012 On the building of the Technical School in Pirot 4.59 2013 On the building of the Faculty of Sciences and Mathematics in Nis 2.08 2012 On the building of the Faculty of Electronic Engineering in Nis 1.2 2011 Telephone Engineering Ltd. in Zemun On the residential house in Batusinac 10 2012 In the village of Cortanovci 10 2012 In Backa Topola 7.5 In Ralja 4.5 Netinvest Ltd. in Belgrade In the yard in village Blace near Kursumlija 10 2011 On the roof of headquarter building of Electrical Power Company of Republic of Srpska 6.75 2013 On the building of the secondary school in Varvarin 5 2010 On the building of the secondary electrotechnical school Rade Koncar in Belgrade 5 2010 On the building of the secondary technical school Mihajlo Pupin in Kula 5 2010 On the building of secondary technical school in Varvarin 5 2010 On the roof of the daycare center in Bezanijska kosa 3 2012 Elektrovat Ltd. in Cacak On the building Elektrovat Ltd. in Cacak 54.72 2012 Institute Mihajlo Pupin in Belgrade On the building of the Institute Mihajlo Pupin in Belgrade 50 2013 Energo Pro-Teh Ltd. in Zrenjanin On the roof of the Faculty of Technical Sciences in Cacak 1.050 2008 Faculty of Technical Sciences in Novi Sad On the building of Faculty of Technical Sciences in Novi Sad FTS1 9.6 2011 On the building of Faculty of Technical Sciences in Novi Sad FTS2 15.9 2015 Elektromehanika Ltd. in Nis On the building of Elektromehanika Ltd. in Nis 30 2014 Hemofrigo Ltd. in Leskovac On the building of Hemofrigo Ltd. in Leskovac 60 2012 Vinca Solar in Belgrade On the building of Primary school Dusan Jerkovic in Ruma 3 2004 A fixed on-grid 2 kWp PV solar power plant was installed on the roof of the Faculty of Science and Mathematics (FSM) building in Nis (Republic of Serbia) in October, 2012. The plant consists of 10 monocrystalline silicon solar modules, single power of 200 Wp (SST-200WM, Shenzhen Sunco Solar Technology Co.). The solar modules based on metal stainless steel with the foundation inclined at 32º towards the South are serial interconnected in a string. Using adequate conductors, the mentioned solar modules are connected to a DC distribution box (RO-DC), single phase inverter (Sunny Boy 2000 HF-30 of 2 kW), AC distribution box (RO-AC) and the city power grid. DC and AC distribution boxes contain protective components providing steady functioning of the PV solar power plant. At the output of AC distribution box there is alternating (AC) voltage 230 V, 50 Hz. Monitoring and management of the PV solar power plant is performed via WebBox communication device over the internet. Also, at the FSM in Nis a mini off-grid PV solar power plant of 1.05 kWр was installed. The battery unit has a capacity of 8 kWh. It is intended for the lighting of the building, yard and the Faculty parking. There were used lights of the new fluorescent and semiconductor technology. The project was done thanks to the donation of the Philip Morris company. PV solar power plant FTS1 of 9.6 kWp is located on the roof of the building of the Faculty of Technical Sciences in Novi Sad (FTSNS). It consists of 40 photovoltaic solar panels arranged in two strings, each of 20 modules. The panels are made of the polycrystalline silicon, individual power of 240Wp (Yingli Solar) and are directed towards the south under the tilting angle of 30º. The PV solar power plant uses the inverter of the SMA company type STP8000-TL power of 8 kW with a wireless transmitter. Monitoring and management of the PV solar power plant is performed via WebBox 14
  29. 29. communication device over the internet. Installation of the PV solar power plant was carried out by the CRESPQ experts with the help of the students of the study program- Power Engineering- Renewable Sources of Energy. The PV solar power plant was put into operation on October 25, 2011. Besides, PV solar power plant FTS2 of 15.9 kWp is located on the roof of the Mechanical Engineering Institute of the Faculty of Technical Sciences in Novi Sad (Fig.5). It consists of 61 solar photovoltaic modules, which are placed in four strings as follows: two strings 18+19 panels of the polycrystalline silicon, individual power of 255 Wp (Yingli Solar) and two strings 12+12 solar modules of the monocrystalline silicon, individual power of 270 Wp (Yingli Solar). Solar modules are facing southeast under the tilting angle of 20º. The PV solar power plant uses ABB inverters total power of 16.3 kW, with integrated wireless transmitter, for the monitoring of the PV solar power plant over the Internet. Initial operation of the PV solar power plant is planned for May, 2015. On the roof of the commercial building Elektrovat Ltd. in Cacak, a PV solar power plant of 54.72 kWp, consisting of 228 polycrystalline silicon solar modules, individual power of 240 Wp, and two network inverters, individual power of 25 kW, is installed (Fig.6). The solar modules and network inverters were produced by Schüco International KG (Bielefeld, Germany). Figure 5: PV solar power plant FTS2 of 15.9 kWp on the building of the Mechanical Engineering Institute of the Faculty of Technical Sciences in Novi Sad Figure 6: PV solar power plant Elektrovat of 54.72 kWp in Cacak (Elektrovat Ltd., Cacak) On the roof of the Faculty of Technical Sciences in Cacak, a company Energo Pro-Tec from Zrenjanin, has installed a PV solar power plant of 1050 Wp (2008). PV solar power plant consists of five polycrystalline silicon modules, individual power of 210 Wp. This plant uses two dry batteries, capacity of 200 Ah/12 V. PV solar power plant is used to power computers, lighting, etc. [1,10-13]. 2.12. PV solar power plants in the Republic of Srpska In recent few years has Republic of Srpska started using solar energy for the generation of electrical energy more intensively. PV solar power plants that the company ETMAX Ltd. from Banja Luka (www.etmaxdoo.com) has installed in the Republic of Srpska are given in Table 2. Table 2: PV solar power plants that the company ETMAX Ltd. from Banja Luka has installed in the Republic of Srpska No. PV solar power plant Location Power (kWp) Year of commissioning 1. BORIK-NESTRO PETROL A.D. Banja Luka 12.5 2012 2. FRATELO 1-FRATELO TRADE A.D. Banja Luka 45.0 2012 3. BLC 1-BANJA LUKA COLEGE Banja Luka 20.0 2012 4. GLAMOCANI-MIRJANIC MILKA Laktasi 10.0 2012 5. WOLL-SILVANA VOLL Teslic 10.0 2012 6. VERANO-VERANO MOTORS Banja Luka 48.0 2013 7. FE RAFINERIJA ULJA MODRICA Modrica 110.0 2013 8. BLC 2–BANJA LUKA COLEGE Banja Luka 10.0 2014 9. NIKOLA TESLA–O.S. NIKOLA TESLA Banja Luka 10.0 2014 10. MADRA 1-MADRA doo Celinac 50.0 2014 15
  30. 30. 11. MADRA 2-MADRA doo Celinac 50.0 2014 12. TESLA 1-TESLA doo Modrica 120.0 2014 13. TESLA 2-TESLA doo Modrica 120.0 2014 14. NOVAKOVIC-BESJEDA doo Prnjavor 249.0 2014 15. FRATELO 2-Fratelo Trade A.D. Banja Luka 107.5 2014 16. KULTURNI CENTAR Gradiska 10.0 2014 17. DELTA–BMB DELTA doo Gradiska 50.0 2014/15 18. TRIVAS–MI TRIVAS doo Prnjavor 50.0 2014/15 19. NEUTRON-MBM doo Bijeljina 180.0 2014/15 20. SOLAR 1-SOLAR 1 d.o.o. Bileca 249.9 2014/15 21. UGLJEVIK–TE Ugljevik a.d. Ugljevik 240.0 2015 22. ATLANTIK-ETMax d.o.o. Banja Luka 150.0 2015 Fig. 7. PV solar power plant NEUTRON – MBM Ltd. of 180 kWp, Bijeljina, (2014/15) Fig. 8. PV solar power plant NOVAKOVIC- BESJEDA of 249 kWp Vijacani, Prnjavor, (2014) In October 2012 the rooftop fixed on-grid 2.08 kWp PV solar power plant was installed on the building of the Academy of Sciences and Arts, Republic of Srpska in Banja Luka. Continuous measurements of the PV solar power plant electrical parameters began on April 04, 2013. PV solar power plant on the roof of the Academy of Sciences and Arts of the Republic of Srpska is used in scientific research and for educational purposes. In Kozarska Dubica three PV solar power plants Solar 1, Solar 2 and Solar 3 individual power of 49 kWp each, totaling 147 kWp, were installed. PV solar power plants use the inverters manufactured by the German company SMA Euros [1,14,15]. 3. Conclusion Based on the aforementioned it can be concluded that for the photovoltaic solar energy conversion solar cells of different materials (monocrystalline, polycrystalline and amorphous silicon, GaAs, CdTe, copper-indium-diselenide – CIS, copper-sulfide/cadmium-sulfide - Cu2S/CdS, etc.) can be used. Since the outbreak of the global energy crisis in 1973, the world has been increasingly investing in different kinds of PV solar power plants (fixed and tracking, grid – on, grid-off, etc.). Worldwide, for PV solar power plants mostly used are monocrystalline and polycrystalline silicon solar modules and rarely modules made of the amorphous silicon, CdTe and CIS materials. In last couple years Serbia and the Republic of Srpska started to use solar cells for the generation of electrical energy. Serbia has up to now installed two PV solar power plants of 2 MWp (in Matarova and Velesnica) and more than 200 grid-off PV solar power plants of 1-60 kWp. In the past 3 years, the Republic of Srpska has installed more than 20 grid-on PV solar power plants of 2-250 kWp. Acknowledgement This paper was done with the financial support of the project 19/6-020/961-102-1/11 approved by the Ministry of Science and Technology of the Republic of Srpska, and project TR33009 approved by the Ministry of Education, Science and Technology of the Republic of Serbia. 16
  31. 31. 17 References [1] T. Pavlović, D. Milosavljević, D. Mirjanić, Renewable sources of energy, Academy of sciences and arts of the Republic of Srpska, Monographs – Book XVII, Section of Natural sciences, mathematics and technical sciences, – Book 18, Banja Luka, 2013, 364 pp, ISBN 978-99938-21- 41-0 (in Serbian). [2] B. Parida, S. Iniyan, R. Goic, A review of solar photovoltaic technologies, Renewable and Sustainable Energy Reviews, 15 (2011), 3, pp. 1625-1636. [3] S. Mekhilef, R. Saidur, A. Safari, A review on solar energy use in industries, Renewable and Sustainable Energy Reviews, 15 (2011), 4, 1777-1790. [4] K. H. Solangi, M. R. Islam, R. Saidur, N. A. Rahim, H. Fayaz, A review on global solar energy policy, Renewable and Sustainable Energy Reviews, 15 (2011), 4, 2149-2163. [5] T. Pavlović, B. Čabrić, Physics and techniques of solar energetics, Građevinska knjiga, Belgrade, first ed. 1999; second ed. 2007, 342 pp., ISBN 86-395-0505-5 (in Serbian). [6] T. Markvart, L. Castaner, Solar Cells, Elsevier, Amsterdam, 2006. [7] H.S. Ullal, Overview and Challenges of Thin Film Solar Electric Technologies, Conference Paper at the World Renewable Energy Congress X and Exhibition 2008. Available online at: http://www.scribd.com/doc/58670014/NREL-Thin-Film-Overview-2008 [8] M. Green, Thin-film solar cells: Review of materials, technologies and commercial status, Journal of Materials Science: Materials in Electronics, 18 (2007), 1, pp. 15-19. [9] Handbook of Photovoltaic Science and Engineering. Edited by A. Luque and S. Hegedus, 2003., John Wiley & Sons, Ltd. ISBN: 0-471-49196-9 [10] T. Pavlović, D. Mirjanić, D. Milosavljević, D. Pirsl, Application of contemporary materials in solar energetics, International Scientific Conference, Proceedings, Unitech 2013, Technical University of Gabrovo, Bulgaria, 2013, Vol. IV, pp. IV-371-376. [11] T. Pavlović, D. Milosavljević, I. Radonjić, L. Pantić, A. Radivojević, M. Pavlović, Possibility of electricity generation using PV solar plants in Serbia, Renewable and Sustainable energy Review, 20 (2013), 201-218, doi: 10.1016/j.rser.2012.11.070 [12] D. Milosavljević, T. Pavlović, D. Piršl, Performance analysis of a grid-connected solar PV plant in Niš, Republic of Serbia, Renewable and Sustainable Energy Reviews, 44 (2015), 423-435, DOI: 10.1016/j.rser.2014.12.031 [13] T. Pavlović, D. Milosavljević, M. Lambić, V. Stefanović, D. Mančić and D. Pirsl, Solar energy in Serbia, Contemporary Materials (Renewable energy sources), II-2, 2011, 204-220, doi:10.5767/anurs.cmat.110202.en.204P [14] Dragana D. Milosavljević, Dragoljub LJ. Mirjanić, Tomislav M. Pavlović, Darko Divnić, Danica S. Pirsl, Energy efficiency of PV solar plant in real climate conditions in Banja Luka, Thermal Science, 2015, DOI:10.2298/TSCI150121033M [15] D. Milosavljević, T. Pavlović, D. Mirjanić, L. Pantić, D. Piršl, Solar energy in Serbia and Republic of Srpska, Proceedings of International Conference, Energy efficient equipment and technology in housing and communal services, O.M. Beketov National University of Urban Economy in Kharkiv, Kharkiv, 2014, 109-114.
  32. 32. 3rd International Conference New Functional Materials and High Technology NFMaHT-2015 29-30 June 2015, Tivat, Montenegro Plenary and Invitation Paper PHYSICO-CHEMICAL BASIS FOR MANUFACTURING TECHNOLOGIES OF SOLUTION-PROCESSED POLYMER PRODUCTS Konstantin V. Pochivalov1 , Yaroslav V. Kudryavtsev2 , Ljiljana Miletić3 1 G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, RUSSIA, E-mail: pkv@isc-ras.ru 2 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, RUSSIA 3 Faculty of Project and Innovation Management, Belgrade, SERBIA Summary: The full phase diagram of high-density polyethylene (HDPE) – 1,2,4,5-tetrachlorobenzene (TeCB) mixture is constructed by an optical method. For the first time it includes the solubility curve of TeCB in the polymer, which cannot be located with the differential scanning calorimetry. It is shown that the heating of a semicrystalline polymer and a sublimable low molecular weight crystalline substance results in dissolution of the latter in the polymer, which is simultaneously amorphized. The eutectic composition corresponds to the situation when the crystallization of TeCB out of its solution in the HDPE melt is accompanied by the crystallization of elementary units of polymer chains. As a result, the polymer acquires a gel microstructure with crystallites as crosslinks and amorphous regions saturated with TeCB. Keywords: semicrystalline polymer; phase diagram; polymer solution; liquidus; thermally induced phase separation. 1. INTRODUCTION It is clear that the successful development of physico-chemical grounds for the solution-based technologies of manufacturing new polymeric products (fibers, membranes, films, and powders) should rely upon the phase diagrams of polymer – low molecular weight (MW) component systems. However, the published diagrams are incomplete and thus can give a wrong description of the phase and physical state of such systems in different domains of the temperature-concentration field. In this paper, on the example of a binary mixture of high density polyethylene (HDPE) - 1,2,4,5- tetrachlorobenzene (TeCB), we discuss shortcomings of the published phase diagram, for the first time construct a complete phase diagram of the system, and give its detailed thermodynamic analysis. The phase diagram (Figure 1) of a binary mixture HDPE – TeCB constructed by Smith and Pennings using the DSC data [1,2] is based on two assumptions: (i) Phase behavior of the system below AB and BC curves is identical up to the type of the crystallizing component (TeCB or HDPE); (ii)The endotherm maxima may be used for plotting borderlines, regardless of melting or dissolution process is considered. Both these statements, which also underlie the phase diagrams reported for (poly(-caprolactone) – trioxane [3], PEO – glutaric acid [4], i-PP – hexamethylbenzene [5], and LLDPE – pyrene or hexamethylbenzene [6], are, strictly speaking, incorrect. 18
  33. 33. Figure 1: Melting point (DSC) diagram of HDPE – TeCB mixture. wPE indicates the weight fraction of polyethylene. Adapted from ref 1. (1) The liquidus curve BC can be found with the Flory approach [7] by considering the equilibrium between crystalline and amorphous regions at a polymer melting temperature Тm. As those regions are physically separable, they could be treated as different phases [8]. The situation is drastically changed upon cooling the system below Тm, since crystallites become interconnected with extended chains thus forming a 3d network. In other words, the 1st order phase transition, which involves the elementary units of macromolecules, results in the transformation of the binary mixture into a single-phase microheterogeneous gel rather than in the separation of a polymer crystalline phase. Concentration of the low MW component in the gel remains constant until it begins to form its own crystals. The gel phase is shown as the region II in the phase diagram LDPE – toluene constructed by us in [9]. One can expect the same phase behavior of the HDPE – TeCB mixture, where the only difference with ref 9 is that the low MW substance forms a crystalline rather than liquid phase when it separates out of the single-phase gel. Figure 2: DSC thermogram of the the tin – bismuth alloy, containing 57 at.% Bi. Figure 3: DSC thermogram of the HDPE – TeCB mixture (wPE = 0.9). Adapted from [2]. 100 110 120 130 140 dQ/dt(cal/sec) Т, С 300 T, С endo Beginning: 140.0 С End: 186.3 С 250100 150 200500 19
  34. 34. (2) DSC technique gives unambiguous results for the crystallinity only in low MW systems. For instance, the Bi – Sn phase diagram [10] implies that heating an alloy with 57 at.% Bi should yield two endotherms, a sharp peak reflecting the eutectic melting at 139 С, and another broad peak characterizing the dissolution of extra Bi crystals in the eutectic melt within the range of 139 – 187 С. The thermogram (Figure 2) obtained by us at a heating rate of 10 С/min fairly agrees with that behavior, though if the peak maxima are considered, the eutectic temperature and that of full Bi dissolution are shifted by 17 and 9 С, respectively. As seen from Figure 3, the thermogram of the HDPE – TeCB mixture reported in ref 2 is qualitatively different. It is naturally to suppose that it reflects the dissolution of TeCB in HDPE followed by the melting of last polymeric crystallites in the presence of the dissolved low MW component. However, Figure 3 does not allow estimating the temperature when the dissolution is over. Thus, the HDPE – TeCB phase diagram obtained by Smith and Pennings lacks the solubility curve of the low MW component in the solid polymer. In this paper we construct the full phase diagram and present direct experimental evidence of the solubility of TeCB in solid HDPE. Another incompleteness of the binary crystalline-crystalline phase diagrams was revealed by Matkar and Kyu [11] by extending the Flory theory to capture the possibility of cocrystallization, which leads to the appearance of solidus curves. However, for a polymer – low MW substance system, the solidus curves should be located extremely close to the pure component axes and therefore they hardly can be detected experimentally. 2. MATERIALS AND METHODS High-density polyethylene (HDPE) (293-295D, Kazan Orgsintez, Russia) with a melt flow index of 0.054 ± 0.005 g/10 min measured at 190 ºС under a load of 2.16 kg (DIN EN ISO 1133:2005), density of 0.934±0.008 g/сm3 (determined pycnometrically at 25 ºС), melting temperature Tm = 138 ± 1 ºС (found with a Boetius hot-stage microscope at a heating rate of 4 С/min) or Тm = 139.5 ± 0.3 С (end of the DSC melting curve), and the degree of crystallinity of 55.8 % (determined by WAXS) was used. 1,2,4,5-tetrachlorobenzene (TeCB) of the high-purity grade and melting temperature Tm = 141 ºС was additionally purified by sublimation at 81 С. DSC (204 F1 Phoenix Netzsch calorimeter, a rate of 10 C/min under argon flow, sample mass 5-7 mg, standard calibration) was used for measuring the heat of fusion and estimating the melting point for HDPE and TeCB and obtaining the melting thermogram for an alloy Bi – Sn containing 57 at% of Bi. For constructing the HDPE – TeCB phase diagram, we implemented the optical method [9]. 3. RESULTS AND DISCUSSION A full phase diagram of the HDPE – TeCB mixture is mapped out in Figure 4. It includes two borderlines, ABF and DBC. АBF is the liquidus curve for TeCB crystallizing out of its solution in the HDPE melt (AB segment) and in the amorphous regions of the semicrystalline HDPE (BF segment). DBC is the dependence of the last HDPE crystallites melting temperature on the amount of TeCB dissolved in the polymer. Since the liquidus for TeCB traverses the whole temperature-composition field, one could argue that only TeCB solutions in HDPE can exist above that curve. In other words, HDPE is a solvent and TeCB is a solute at any composition of this binary mixture, so that the diagram in Figure 4 describes the system semicrystalline polymer – non-solvent (diluent). Below the liquidus the mixture is two-phase containing TeCB crystals that coexist with their solution in the HDPE melt (domain IV) or in the amorphous regions of solid HDPE (domain III). DBC is not a true phase curve but it provides useful information on the physical state of the binary system. Indeed, above the ABF curve the TeCB solution in HDPE can exist either as a homogeneous molecular mixture (domain I), or as a single-phase gel with HDPE crystallites as crosslinks (domain II), the concentration of which strongly depends on the temperature and composition. 20
  35. 35. The point B also has a dual meaning. One the one hand, it characterizes the minimum temperature of full HDPE amorphization in the presence of liquid TeCB, on the other it indicates the temperature at which TeCB crystallizes simultaneously with the elementary units of HDPE. The latter process results in the formation of only one (low MW) crystalline phase, while the other phase containing TeCB solution in the amorphous regions of HDPE remains in the strict sense liquid. Nevertheless, it can be classified as the eutectic crystallization without alloy formation. It is worth noting that the coordinates of the point B on the phase diagrams obtained by the DSC (2B = 0.58, ТB = 118 C, Figure 1) and optical methods (2B = 0.53, ТB = 120 C, Figure 4) are rather close. Transformation of the linear BF segment (Figure 1) into the non-linear one (Figure 4) fundamentally changes not only thermodynamical but also technological meaning of the phase diagram. Indeed, apparently solid HDPE gels containing TeCB can be obtained either via phase separation upon transition I  III or by cooling down the system within the single-phase domain II that leads to an increase in the gel crosslinks density. T, C D B C F A Figure 4: Full phase diagram for HDPE – TECB mixture obtained by the optical method. Photographs in Figure 5 make it possible to monitor the effect of heating on the state of HDPE – TeCB systems of various compositions. With an excess of HDPE, the two-phase system at the point К includes coexisting HDPE granule and TeCB crystals (Figure 5а). When it is heated up to the point K1, a single-phase microheterogeneous state is formed: TeCB crystals disappear, while the granule is swollen and opalescing (Figure 5b). This lasts until the point K2 is reached, where the granule melts completely and becomes a liquid mixture (Figure 5с). With an excess of TeCB, the initial system state at the point K (Figure 5d) is similar to that in the point К. When heated to the point K1, the system is still two-phase: TeCB crystals coexist with the liquid HDPE – TeCB mixture at the weight fraction of TeCB equal to 1 – 2B (Figure 5e). At the point K2, the system becomes single-phase, as at K2, but in this case due to the dissolution of TeCB crystals in the liquid HDPE (Figure 5f). I II III K2΄ K2 IV K1΄ K1 K΄ K Tam min 100 0.1 0.5 0.7 0.90.3 120 140 160 80 Polymer weight fraction, 2 21
  36. 36. Now let us discuss how TeCB crystals are dissolved in the polymer. Since they are readily sublimated, it is natural to suppose that the vapor phase mechanism [12] is realized. In order to check it, we performed melting experiments in the absence of a direct contact between HDPE and TeCB, which was put into a small open ampoule. HDPE – TeCB system of the composition 2 = 0.8 was heated from room temperature to 116 and then to 130 С. The same procedure was applied to the system with 2 = 0.2, where the temperatures of 120 and then 135 С were reached. a b c d e f Figure 5: Photographs of the ampoule with the HDPE – TeCB mixture at the (a) K, (b) K1, (c) K2, (d) K, (e) K1, and (e) K2 points of the phase diagram in Figure 4. As is seen from Figure 6a-c, under the polymer excess conditions all TeCB crystals disappear at 116 С but the polymeric cylinder is still opalescent indicating the presence of crystallites inside it. At 130 С the polymer sample becomes a transparent liquid. In the second experiment (2 = 0.2), the polymer granule gets transparent already at 120 С, though TeCB are still visible in the inner ampoule. At 135 С those crystals disappear, while the volume of HDPE melt increases. This corroborates the vapor phase mechanism of dissolving TeCB in solid HDPE. If, however, TeCB is in contact with melted HDPE, then the direct dissolution is also possible. One can assume that aside from the known phase diagrams polymer – good solvent, polymer – poor solvent, polymer – sublimable crystalline substance, there exists another diagram type semicrystalline polymer – non-sublimating crystalline substance, melting point of which is higher than that of the polymer. Thus, the results obtained for HDPE – TeCB mixture clearly explain the meaning of our concept [13] that treats semicrystalline polymers (similarly to viscous, highly elastic, and glassy polymers) as liquids. 22

×