Most data visualization solutions today still work on data sources which are stored persistently in a data store, using the so called “data at rest” paradigms. More and more data sources today provide a constant stream of data, from IoT devices to Social Media streams. These data stream publish with high velocity and messages often have to be processed as quick as possible. For the processing and analytics on the data, so called stream processing solutions are available. But these only provide minimal or no visualization capabilities. One option is to first persist the data into a data store and then use a traditional data visualization solution to present the data. If latency is not an issue, such a solution might be good enough. An other question is which data store solution is necessary to keep up with the high load on write and read. If it is not an RDBMS but an NoSQL database, then not all traditional visualization tools might already integrate with the specific data store. An other option is to use a Streaming Visualization solution. This talk presents different architecture blueprints for integrating data visualization into a fast data solutions.