Independent of the source of data, the integration and analysis of event streams gets more important in the world of sensors, social media streams and Internet of Things. Events have to be accepted quickly and reliably, they have to be distributed and analyzed, often with many consumers or systems interested in all or part of the events. In this session we compare two popular Streaming Analytics solutions: Spark Streaming and Kafka Streams. Spark is fast and general engine for large-scale data processing and has been designed to provide a more efficient alternative to Hadoop MapReduce. Spark Streaming brings Spark's language-integrated API to stream processing, letting you write streaming applications the same way you write batch jobs. It supports both Java and Scala. Kafka Streams is the stream processing solution which is part of Kafka. It is provided as a Java library and by that can be easily integrated with any Java application.