Solutions for bi-directional integration between Oracle RDBMS & Apache Kafka

Guido Schmutz
Guido SchmutzTechnology Manager, Oracle ACE Director, Certified SOA Architect, Certified Cassandra Developer at Trivadis
BASEL | BERN | BRUGG | BUCHAREST | COPENHAGEN | DÜSSELDORF | FRANKFURT A.M. | FREIBURG I.BR.
GENEVA | HAMBURG | LAUSANNE | MANNHEIM | MUNICH | STUTTGART | VIENNA | ZURICH
http://guidoschmutz@wordpress.com@gschmutz
Solutions for bi-directional integration
between Oracle RDBMS & Apache Kafka
Guido Schmutz
DOAG Konferenz 2019
Agenda
1. Introduction
2. Blueprints Oracle RDBMS => Apache Kafka
3. Blueprints Apache Kafka => Oracle RDBMS
4. Summary
BASEL | BERN | BRUGG | BUKAREST | DÜSSELDORF | FRANKFURT A.M. | FREIBURG I.BR. | GENF
HAMBURG | KOPENHAGEN | LAUSANNE | MANNHEIM | MÜNCHEN | STUTTGART | WIEN | ZÜRICH
Guido
Working at Trivadis for more than 22 years
Consultant, Trainer, Platform Architect for Java,
Oracle, SOA and Big Data / Fast Data
Oracle Groundbreaker Ambassador & Oracle ACE
Director
@gschmutz guidoschmutz.wordpress.com
171st
edition
Solutions for bi-directional integration between Oracle RDBMS & Apache Kafka
Introduction
Microservices / Modern Applications
• Highly decoupled
• Independently deployable
• Bounded Context/Aggregate (DDD)
• Responsible for their data
• Favour asynchronous, event-driven
interaction over synchronous
• Smart Endpoints and Dump Pipes
• Use Anti-Corruption Layer (ACL) if no
fit! M3M2
ACL
Event
Hub
M1
Microservices / Modern Applications
Integrate with Traditional System
M3M2
ACL
Event
Hub
M1
ACL
• Highly decoupled
• Independently deployable
• Bounded Context/Aggregate (DDD)
• Responsible for their data
• Favour asynchronous, event-driven
interaction over synchronous
• Smart Endpoints and Dump Pipes
• Use Anti-Corruption Layer (ACL) if no
fit!
Traditional
App
Use Case
Customer Microservice
{ }
Customer API CustomerCustomer Logic
Order Processing System
{ }
Order API OrderOrder Logic
REST
REST
Event Hub
Customer
Mat View
Order
Customer
(compacted)
Notification Microservice
Notification Logic
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
“Modern Apps”Traditional Apps (Legacy)
MessageMessageMessageMessage
MessageMessage
Properties - Message
Message Message
A1 A2 A3
Message
B1 B2 B3 B4
A1 A2 A3 B
B1 B2 B3 B4
Table A
A1
A2
A3
Table B
B1
B2
B3
B4
FlatDB Model Aggregate
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Properties - Latency
Traditional System Event
Hub
Data
Flow
RDBMS
latency
latency
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Properties – Anti-Corruption Layer (ACL)
Traditional System Event
Hub
Data
Flow
RDBMS
Traditional System Event
Hub
Data
Flow
RDBMS
ACL
ACL
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Examples:
• View Layer
• Storage Procedure
• JSON Support in DB
• …
Examples:
• StreamSets
• Kafka Connect
• Kafka Streams / KSQL
• …
Database Dataflow
Blueprints Oracle RDBMS =>
Apache Kafka
Blueprints Oracle RDBMS => Apache Kafka (DB-K)
Customer Microservice
{ }
Customer API CustomerCustomer Logic
Order Processing System
{ }
Order API OrderOrder Logic
REST
REST
Event Hub
Customer
Mat View
Order
(compacted)
Customer
(compacted)
Notification Microservice
Notification Logic
Schema
Registry
DB-K_1: Polling of RDBMS table/view
DB-K_2: Change Data Capture (CDC) on RDBMS
DB-K_3: Polling of RDBMS API
DB-K_4: Produce to Event Hub from RDBMS
DB-K_5: RDBMS Que with bridge to Event Hub
DB_K-1
DB_K-2
DB_K-3
DB_K-4
DB_K-5
DB-K_1: Polling of RDBMS table/view
Event
Hub
Stream Data
Integration
API
Applications / Data Sources
Data FlowRDBMS
Application
Logic
Stream Data
Integration & Analytics
Stream
Analytics
Data Flow
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Event
Hub
Stream Data
Integration
API
Applications / Data Sources
Data FlowRDBMS
Application
Logic
Stream Data
Integration & Analytics
Stream
Analytics
Data Flow
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
DB-K_1: Polling of RDBMS table/view
Kafka Connect with JDBC Source Connector
Kafka Connect & JDBC Connector
• Many connectors available
• Single Message Transforms (SMT)
• declarative style, simple data flows
• framework is part of Apache Kafka
DB-K_1 – Configure JDBC Connector
#!/bin/bash
curl -X "POST" "http://192.168.69.138:8083/connectors" 
-H "Content-Type: application/json" 
-d $'{
"name": "jdbc-driver-source",
"config": {
"connector.class": "JdbcSourceConnector",
"connection.url":"jdbc:oracle:thin//oracle-db:1521/XEPDB1",
"mode": "timestamp",
"timestamp.column.name":”modified_at",
"table.whitelist":”order",
"validate.non.null":"false",
"topic.prefix":”orderprocessing_",
"key.converter":"org.apache.kafka.connect.json.JsonConverter",
"key.converter.schemas.enable": "false",
"value.converter":"org.apache.kafka.connect.json.JsonConverter",
"value.converter.schemas.enable": "false",
"name": "jdbc-driver-source",
"transforms":"createKey,extractInt",
"transforms.createKey.type":"org.apache.kafka.connect.transforms.ValueToKey",
"transforms.createKey.fields":"id",
"transforms.extractInt.type":"org.apache.kafka.connect.transforms.ExtractField$Key",
"transforms.extractInt.field":"id"
}
}'
DB-K_2: Change Data Capture (CDC) on RDBMS
Stream Data
Integration & Analytics
Stream
Analytics
Event
Hub
Stream Data
Integration
API
Data Flow
Application / Data Sources
Data Flow
Application
Logic
RDBMS
Redo Log
REST to
Event Hub
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Stream Data
Integration & Analytics
Stream
Analytics
Event
Hub
Stream Data
Integration
API
Data Flow
Application / Data Sources
Data Flow
Application
Logic
RDBMS
Redo Log
REST to
Event Hub
Rest Proxy
DB-K_2: Change Data Capture (CDC) on RDBMS
Using Oracle GoldenGate
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Alternatives:
StreamSets Data Collector
Attunity
Debezium
…
DB-K_3: Polling of RDBMS API
Event
Hub
Stream Data
Integration
API
Applications / Data Sources
Data Flow
RDBMS
Application
Logic
API
Stream Data
Integration & Analytics
Stream
Analytics
Data Flow
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Event
Hub
Stream Data
Integration
API
Applications / Data Sources
Data Flow
RDBMS
Application
Logic
API
Stream Data
Integration & Analytics
Stream
Analytics
Data Flow
DB-K_3: Polling of RDBMS API
StreamSets invokes Oracle Rest Data Service
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Oracle REST Data Services (ORDS)
• makes it easy to develop modern REST interfaces for relational data in the
Oracle Database and the Oracle Database 18c JSON Document Store
• ORDS maps HTTP(S) verbs (GET, POST, PUT, DELETE, etc.) to database
transactions and returns any results formatted using JSON
• Java middle tier application on WebLogic, Tomcat, Docker, Standalone (for
development)
DB-K_3 – Setup ORDS (I)
ORDS.ENABLE_SCHEMA(
p_enabled => TRUE,
p_schema => 'ORDER_PROCESSING',
p_url_mapping_type => 'BASE_PATH',
p_url_mapping_pattern => 'order_processing',
p_auto_rest_auth => FALSE);
ORDS.DEFINE_MODULE(
p_module_name => 'order_processing',
p_base_path => '/orders/',
p_items_per_page => 25,
p_status => 'PUBLISHED',
p_comments => NULL);
ORDS.DEFINE_TEMPLATE(
p_module_name => 'order_processing',
p_pattern => 'changes/:offset',
p_priority => 0,
p_etag_type => 'HASH',
p_etag_query => NULL,
p_comments => NULL);
DB-K_3 – Setup ORDS (II)
ORDS.DEFINE_HANDLER(
p_module_name => 'order_processing',
p_pattern => 'changes/:offset',
p_method => 'GET',
p_source_type => 'resource/lob',
p_items_per_page => 25,
p_source =>
'SELECT ''application/json'', json_object(''orderId'' VALUE po.id,
''orderDate'' VALUE po.order_date,
''orderMode'' VALUE po.order_mode,
''customer'' VALUE
json_object(''firstName'' VALUE cu.first_name,
''lastName'' VALUE cu.last_name
''emailAddress'' VALUE cu.email),
''lineItems'' VALUE (SELECT json_arrayagg(
json_object(''ItemNumber'' VALUE li.id,
''Product'' VALUE
json_object(''id'' VALUE li.product_id,
''name'' VALUE li.product_name,
''unitPrice'' VALUE li.unit_price),
''quantity'' VALUE li.quantity))
FROM order_item_t li WHERE po.id = li.order_id),
''offset'' VALUE TO_CHAR(po.modified_at, ''YYYYMMDDHH24MISS''))
FROM order_t po LEFT JOIN customer_t cu ON (po.customer_id = cu.id)
WHERE po.modified_at > TO_DATE(:offset, ''YYYYMMDDHH24MISS'')'
StreamSets Data Collector
• GUI-based, drag-and
drop Data Flow Pipelines
• Both stream and batch
processing
• custom sources, sinks,
processors
• Monitoring and Error
Detection
DB-K_4: Produce to Event Hub from RDBMS
Event
Hub
Stream Data
Integration
API
Applications / Data Sources
RDBMS
Application
Logic
API
Stream Data
Integration & Analytics
Stream
Analytics
Data Flow
REST to
Event Hub
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Event
Hub
Stream Data
Integration
API
Applications / Data Sources
RDBMS
Application
Logic
API
Stream Data
Integration & Analytics
Stream
Analytics
Data Flow
REST to
Event Hub
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
DB-K_4: Produce to Event Hub from RDBMS
Native Kafka Producer using Java in DB
Does not feel right!
Event
Hub
Stream Data
Integration
API
Applications / Data Sources
RDBMS
Application
Logic
API
Stream Data
Integration & Analytics
Stream
Analytics
Data Flow
REST to
Event Hub
Rest Proxy
?
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
DB-K_4: Produce to Event Hub from RDBMS
Invoke REST Proxy from PL/SQL
Invoking a REST Service
from DB not well-supported
Event
Hub
Stream Data
Integration
API
Applications / Data Sources
RDBMS
Application
Logic
API
Stream Data
Integration & Analytics
Stream
Analytics
Data Flow
REST to
Event Hub
Oracle Big Data SQL
Coming soon …
DB-K_4: Produce to Event Hub from RDBMS
Oracle Big Data SQL integrates with Kafka
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
DB-K_5: RDBMS Queue with bridge to Event Hub
Stream Data
Integration & Analytics
Stream
Analytics
Event
Hub
Stream Data
Integration
API
Data Flow
Application / Data Sources
Data Flow
Application
Logic
RDBMS
Queue
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
DB-K_5: RDBMS Queue with bridge to Event Hub
Oracle Advanced Queuing & Kafka Connect JMS
Stream Data
Integration & Analytics
Stream
Analytics
Event
Hub
Stream Data
Integration
API
Data Flow
Application / Data Sources
Data Flow
Application
Logic
RDBMS
QueueAQ
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
BEGIN
dbms_aqadm.create_queue_table (
queue_table => 'ORDER_QT',
queue_payload_type => 'SYS.AQ$_JMS_TEXT_MESSAGE',
sort_list => 'PRIORITY,ENQ_TIME',
multiple_consumers => FALSE,
message_grouping => dbms_aqadm.none
);
END;
/
DB-K_5 – Setup AQ and Kafka Connect (I)
BEGIN
dbms_aqadm.create_queue (
queue_name => 'ORDER_AQ',
queue_table => 'ORDER_QT',
max_retries => 1,
retry_delay => 2, -- seconds
retention_time => 60*60*24*7 -- 1w
);
END;
/
BEGIN
dbms_aqadm.start_queue(
queue_name => 'ORDER_AQ',
enqueue => TRUE,
dequeue => TRUE
);
END;
/
curl -X "POST" "$DOCKER_HOST_IP:8083/connectors" 
-H "Content-Type: application/json" 
--data '{
"name": "jms-source",
"config": {
"name": "jms-source",
"connector.class": "com.datamountaineer...JMSSourceConnector",
"connect.jms.initial.context.factory":
"oracle.jms.AQjmsInitialContextFactory",
"connect.jms.initial.context.extra.params":
"db_url=jdbc:oracle:thin:@//192.168.73.86:1521/XEPDB1,java.naming.security.princ
ipal=order_processing,java.naming.security.credentials=order_processing",
"tasks.max": "1",
"connect.jms.connection.factory": "ConnectionFactory",
"connect.jms.url": "jdbc:oracle:thin:@//192.168.73.86:1521/XEPDB1",
"connect.jms.kcql": "INSERT INTO order SELECT * FROM order_aq WITHTYPE QUEUE
WITHCONVERTER=`com.datamountaineer.streamreactor.connect.converters.source.JsonS
impleConverter`"
}
}'
DB-K_5 – Setup AQ and Kafka Connect (I)
DB-K_5: RDBMS Queue with bridge to Event Hub
Oracle AQ with Kafka API & MirrorMaker
Stream Data
Integration & Analytics
Stream
Analytics
Event
Hub
Stream Data
Integration
API
Data Flow
Application / Data Sources
Data Flow
Application
Logic
RDBMS
Queue
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
AQ (Kafka API)
Oracle works on a Kafka API
for Advanced Queuing
Blueprints Apache Kafka =>
Oracle RDBMS
Blueprints Apache Kafka => Oracle RDBMS (K-DB)
Customer Microservice
{ }
Customer API CustomerCustomer Logic
Order Processing System
{ }
Order API OrderOrder Logic
REST
REST
Event Hub
Customer
Mat View
Order
(compacted)
Customer
(compacted)
Notification Microservice
Notification Logic
Schema
Registry
K-DB_1: Write to RDBMS table/view
K-DB_2: Write over RDBMS API
K-DB_3: Consume from Event Hub
K-DB_4: Event Hub with bridge to RDBMS Queue
K_DB-1
K_DB-2
K_DB-3
K_DB-4
K-DB_1: Write to RDBMS table/view
Event
Hub
Stream Data
Integration
API
Applications / Data Sources
Data FlowRDBMS
Application
Logic
Stream Data
Integration & Analytics
Stream
Analytics
Data Flow
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Event
Hub
Stream Data
Integration
API
Applications / Data Sources
Data FlowRDBMS
Application
Logic
Stream Data
Integration & Analytics
Stream
Analytics
Data Flow
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
K-DB_1: Write to RDBMS table/view
Kafka Connect and JDBC Sink Connector
K-DB_2: Write over RDBMS API
Event
Hub
Stream Data
Integration
API
Applications / Data Sources
Data Flow
RDBMS
Application
Logic
API
Stream Data
Integration & Analytics
Stream
Analytics
Data Flow
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Event
Hub
Stream Data
Integration
API
Applications / Data Sources
Data Flow
RDBMS
Application
Logic
API
Stream Data
Integration & Analytics
Stream
Analytics
Data Flow
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
K-DB_2: Write over RDBMS API
Kafka Connect invokes Oracle Rest Data Service
DB-K_2 – Setup ORDS (I)
ORDS.DEFINE_HANDLER(
p_module_name => 'customer',
p_pattern => 'customer',
p_method => 'POST',
p_source_type => 'plsql/block',
p_items_per_page => 0,
p_source =>
'DECLARE
L_CU CLOB := :body_text;
BEGIN
INSERT INTO customer_t (id, first_name, last_name, title, notification_on, email, slack_handle,
twitter_handle)
SELECT * FROM json_table(L_CU, ''$''
COLUMNS (
id NUMBER PATH ''$.id'',
first_name VARCHAR2 PATH ''$.firstName'',
last_name VARCHAR2 PATH ''$.lastName'',
title VARCHAR2 PATH ''$.title'',
notification_on VARCHAR2 PATH ''$.notificationOn'',
email VARCHAR2 PATH ''$.email'',
slack_handle VARCHAR2 PATH ''$.slackHandle'',
twitter_handle VARCHAR2 PATH ''$.twitterHandle''
));
INSERT INTO address_t (customer_id, id, street, nr, city, postcode, country)
SELECT * FROM json_table( ... )
K-DB_3: Consume from Event Hub
Event
Hub
Stream Data
Integration
API
Applications / Data Sources
RDBMS
Application
Logic
API
Stream Data
Integration & Analytics
Stream
Analytics
Data Flow
REST to
Event Hub
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Event
Hub
Stream Data
Integration
API
Applications / Data Sources
RDBMS
Application
Logic
API
Stream Data
Integration & Analytics
Stream
Analytics
Data Flow
REST to
Event Hub
Oracle Big Data SQL
Coming soon…
K-DB_3: Consume from Event Hub
Oracle Big Data SQL exposes topic as table
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
K-DB_4: Event Hub with bridge to RDBMS queue
Stream Data
Integration & Analytics
Stream
Analytics
Event
Hub
Stream Data
Integration
API
Data Flow
Application / Data Sources
Data Flow
Application
Logic
RDBMS
Queue
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Stream Data
Integration & Analytics
Stream
Analytics
Event
Hub
Stream Data
Integration
API
Data Flow
Application / Data Sources
Data Flow
Application
Logic
RDBMS
QueueAQ
K-DB_4: Event Hub with bridge to RDBMS queue
Oracle Advanced Queuing & Kafka Connect JMS
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Stream Data
Integration & Analytics
Stream
Analytics
Event
Hub
Stream Data
Integration
API
Data Flow
Application / Data Sources
Data Flow
Application
Logic
RDBMS
QueueAQ (Kafka API)
Oracle works on a Kafka API
for Advanced Queuing
K-DB_4: Event Hub with bridge to RDBMS queue
Oracle AQ with Kafka API & MirrorMaker
Flat Aggregate
Low Latency High Latency
DB Dataflow
Message
Latency
ACL
Open Source CommercialLicense
Summary
Summary
Customer Microservice
{ }
Customer API CustomerCustomer Logic
Order Processing System
{ }
Order API OrderOrder Logic
REST
REST
Event Hub
Customer
Mat View
Order
(compacted)
Customer
(compacted)
Notification Microservice
Notification Logic
Schema
Registry
K-DB_1: Write to RDBMS table/view
K-DB_2: Write over RDBMS API
K-DB_3: Consume from Event Hub
K-DB_4: Event Hub with bridge to RDBMS Queue
K_DB-1
K_DB-2
K_DB-3
K_DB-4
DB_K-1
DB_K-2
DB_K-3
DB_K-4
DB_K-5
https://github.com/gschmutz/various-demos/tree/master/bidirectional-integration-oracle-kafka
DB-K_1: Polling of RDBMS table/view
DB-K_2: Change Data Capture (CDC) on RDBMS
DB-K_3: Polling of RDBMS API
DB-K_4: Produce to Event Hub from RDBMS
DB-K_5: RDBMS Queue with bridge to Event Hub
Bulk Source
Ref Architecture
Data Platform
Service
Event
Stream
Bulk
Data
Flow
Event Source
Location
DB
Extract
File
Weather
DB
IoT
Data
Mobile
Apps
Social
File Import / SQL Import
Consumer
BI Apps
Data Science
Workbench
Enterprise
App
Enterprise Data
Warehouse
SQL / Search
SQL
“Native” Raw
RDBMS
“SQL” / Search
Service
Event
Hub
Hadoop ClusterdHadoop ClusterBig Data Platform
SQL
Export
Storage
Storage
Raw
Refined/
UsageOpt
Microservice Cluster
Stream Processing Cluster
Stream
Processor
Model /
State
Edge Node
Rules
Event Hub
Storage
Governance
Data Catalog
Rules
Engine
Parallel
Processing
Query
Engine
Microservice Data
{ }
API
Event
Stream
Event Stream
Modern Data Platform
Event Stream
Bulk Source
Ref Architecture
Data Platform
Service
Event
Stream
Bulk
Data
Flow
Event Source
Location
DB
Extract
File
Weather
DB
IoT
Data
Mobile
Apps
Social
File Import / SQL Import
Consumer
BI Apps
Data Science
Workbench
Enterprise
App
Enterprise Data
Warehouse
SQL / Search
SQL
“Native” Raw
RDBMS
“SQL” / Search
Service
sEvent
Hub
Hadoop ClusterdHadoop ClusterBig Data Platform
SQL
Export
Storage
Storage
Raw
Refined/
UsageOpt
Microservice Cluster
Stream Processing Cluster
Stream
Processor
Model /
State
Edge Node
Rules
Event Hub
Storage
Governance
Data Catalog
Rules
Engine
Parallel
Processing
Query
Engine
Microservice Data
{ }
API
Event
Stream
Event Stream
Modern Data Platform
Event Stream
Solutions for bi-directional integration between Oracle RDBMS & Apache Kafka
1 of 51

Recommended

Solutions for bi-directional integration between Oracle RDBMS and Apache Kafka by
Solutions for bi-directional integration between Oracle RDBMS and Apache KafkaSolutions for bi-directional integration between Oracle RDBMS and Apache Kafka
Solutions for bi-directional integration between Oracle RDBMS and Apache KafkaGuido Schmutz
813 views52 slides
Introduction to Stream Processing by
Introduction to Stream ProcessingIntroduction to Stream Processing
Introduction to Stream ProcessingGuido Schmutz
753 views38 slides
Streaming Visualization by
Streaming VisualizationStreaming Visualization
Streaming VisualizationGuido Schmutz
511 views40 slides
Kafka as an event store - is it good enough? by
Kafka as an event store - is it good enough?Kafka as an event store - is it good enough?
Kafka as an event store - is it good enough?Guido Schmutz
2.3K views58 slides
Spark (Structured) Streaming vs. Kafka Streams by
Spark (Structured) Streaming vs. Kafka StreamsSpark (Structured) Streaming vs. Kafka Streams
Spark (Structured) Streaming vs. Kafka StreamsGuido Schmutz
5K views41 slides
What is Apache Kafka? Why is it so popular? Should I use it? by
What is Apache Kafka? Why is it so popular? Should I use it?What is Apache Kafka? Why is it so popular? Should I use it?
What is Apache Kafka? Why is it so popular? Should I use it?Guido Schmutz
870 views25 slides

More Related Content

What's hot

Ingesting and Processing IoT Data - using MQTT, Kafka Connect and KSQL by
Ingesting and Processing IoT Data - using MQTT, Kafka Connect and KSQLIngesting and Processing IoT Data - using MQTT, Kafka Connect and KSQL
Ingesting and Processing IoT Data - using MQTT, Kafka Connect and KSQLGuido Schmutz
468 views55 slides
Event Hub (i.e. Kafka) in Modern Data Architecture by
Event Hub (i.e. Kafka) in Modern Data ArchitectureEvent Hub (i.e. Kafka) in Modern Data Architecture
Event Hub (i.e. Kafka) in Modern Data ArchitectureGuido Schmutz
1.3K views38 slides
Streaming Visualization by
Streaming VisualizationStreaming Visualization
Streaming VisualizationGuido Schmutz
393 views39 slides
Solutions for bi-directional Integration between Oracle RDMBS & Apache Kafka by
Solutions for bi-directional Integration between Oracle RDMBS & Apache KafkaSolutions for bi-directional Integration between Oracle RDMBS & Apache Kafka
Solutions for bi-directional Integration between Oracle RDMBS & Apache KafkaGuido Schmutz
1.4K views48 slides
Building event-driven (Micro)Services with Apache Kafka by
Building event-driven (Micro)Services with Apache Kafka Building event-driven (Micro)Services with Apache Kafka
Building event-driven (Micro)Services with Apache Kafka Guido Schmutz
536 views46 slides
Building Event Driven (Micro)services with Apache Kafka by
Building Event Driven (Micro)services with Apache KafkaBuilding Event Driven (Micro)services with Apache Kafka
Building Event Driven (Micro)services with Apache KafkaGuido Schmutz
2.2K views48 slides

What's hot(20)

Ingesting and Processing IoT Data - using MQTT, Kafka Connect and KSQL by Guido Schmutz
Ingesting and Processing IoT Data - using MQTT, Kafka Connect and KSQLIngesting and Processing IoT Data - using MQTT, Kafka Connect and KSQL
Ingesting and Processing IoT Data - using MQTT, Kafka Connect and KSQL
Guido Schmutz468 views
Event Hub (i.e. Kafka) in Modern Data Architecture by Guido Schmutz
Event Hub (i.e. Kafka) in Modern Data ArchitectureEvent Hub (i.e. Kafka) in Modern Data Architecture
Event Hub (i.e. Kafka) in Modern Data Architecture
Guido Schmutz1.3K views
Solutions for bi-directional Integration between Oracle RDMBS & Apache Kafka by Guido Schmutz
Solutions for bi-directional Integration between Oracle RDMBS & Apache KafkaSolutions for bi-directional Integration between Oracle RDMBS & Apache Kafka
Solutions for bi-directional Integration between Oracle RDMBS & Apache Kafka
Guido Schmutz1.4K views
Building event-driven (Micro)Services with Apache Kafka by Guido Schmutz
Building event-driven (Micro)Services with Apache Kafka Building event-driven (Micro)Services with Apache Kafka
Building event-driven (Micro)Services with Apache Kafka
Guido Schmutz536 views
Building Event Driven (Micro)services with Apache Kafka by Guido Schmutz
Building Event Driven (Micro)services with Apache KafkaBuilding Event Driven (Micro)services with Apache Kafka
Building Event Driven (Micro)services with Apache Kafka
Guido Schmutz2.2K views
Building Event Driven (Micro)services with Apache Kafka by Guido Schmutz
Building Event Driven (Micro)services with Apache KafkaBuilding Event Driven (Micro)services with Apache Kafka
Building Event Driven (Micro)services with Apache Kafka
Guido Schmutz1.5K views
Big Data, Data Lake, Fast Data - Dataserialiation-Formats by Guido Schmutz
Big Data, Data Lake, Fast Data - Dataserialiation-FormatsBig Data, Data Lake, Fast Data - Dataserialiation-Formats
Big Data, Data Lake, Fast Data - Dataserialiation-Formats
Guido Schmutz505 views
Solutions for bi-directional Integration between Oracle RDMBS & Apache Kafka by Guido Schmutz
Solutions for bi-directional Integration between Oracle RDMBS & Apache KafkaSolutions for bi-directional Integration between Oracle RDMBS & Apache Kafka
Solutions for bi-directional Integration between Oracle RDMBS & Apache Kafka
Guido Schmutz575 views
Location Analytics - Real-Time Geofencing using Kafka by Guido Schmutz
Location Analytics - Real-Time Geofencing using Kafka Location Analytics - Real-Time Geofencing using Kafka
Location Analytics - Real-Time Geofencing using Kafka
Guido Schmutz956 views
Building event-driven (Micro)Services with Apache Kafka Ecosystem by Guido Schmutz
Building event-driven (Micro)Services with Apache Kafka EcosystemBuilding event-driven (Micro)Services with Apache Kafka Ecosystem
Building event-driven (Micro)Services with Apache Kafka Ecosystem
Guido Schmutz369 views
Spark (Structured) Streaming vs. Kafka Streams - two stream processing platfo... by Guido Schmutz
Spark (Structured) Streaming vs. Kafka Streams - two stream processing platfo...Spark (Structured) Streaming vs. Kafka Streams - two stream processing platfo...
Spark (Structured) Streaming vs. Kafka Streams - two stream processing platfo...
Guido Schmutz753 views
Kafka as your Data Lake - is it Feasible? by Guido Schmutz
Kafka as your Data Lake - is it Feasible?Kafka as your Data Lake - is it Feasible?
Kafka as your Data Lake - is it Feasible?
Guido Schmutz1.8K views
Event Broker (Kafka) in a Modern Data Architecture by Guido Schmutz
Event Broker (Kafka) in a Modern Data ArchitectureEvent Broker (Kafka) in a Modern Data Architecture
Event Broker (Kafka) in a Modern Data Architecture
Guido Schmutz1.2K views
Apache Kafka - Event Sourcing, Monitoring, Librdkafka, Scaling & Partitioning by Guido Schmutz
Apache Kafka - Event Sourcing, Monitoring, Librdkafka, Scaling & PartitioningApache Kafka - Event Sourcing, Monitoring, Librdkafka, Scaling & Partitioning
Apache Kafka - Event Sourcing, Monitoring, Librdkafka, Scaling & Partitioning
Guido Schmutz1.6K views
ksqlDB - Stream Processing simplified! by Guido Schmutz
ksqlDB - Stream Processing simplified!ksqlDB - Stream Processing simplified!
ksqlDB - Stream Processing simplified!
Guido Schmutz1.1K views
Building Event-Driven (Micro)Services with Apache Kafka by Guido Schmutz
Building Event-Driven (Micro)Services with Apache KafkaBuilding Event-Driven (Micro)Services with Apache Kafka
Building Event-Driven (Micro)Services with Apache Kafka
Guido Schmutz2.6K views

Similar to Solutions for bi-directional integration between Oracle RDBMS & Apache Kafka

Solutions for bi-directional integration between Oracle RDBMS and Apache Kafk... by
Solutions for bi-directional integration between Oracle RDBMS and Apache Kafk...Solutions for bi-directional integration between Oracle RDBMS and Apache Kafk...
Solutions for bi-directional integration between Oracle RDBMS and Apache Kafk...confluent
1.7K views50 slides
MongoDB Meetup by
MongoDB MeetupMongoDB Meetup
MongoDB MeetupMaxime Beugnet
177 views60 slides
OSCON 2011 CouchApps by
OSCON 2011 CouchAppsOSCON 2011 CouchApps
OSCON 2011 CouchAppsBradley Holt
5.4K views112 slides
Couchdb: No SQL? No driver? No problem by
Couchdb: No SQL? No driver? No problemCouchdb: No SQL? No driver? No problem
Couchdb: No SQL? No driver? No problemdelagoya
3.2K views82 slides
Ams adapters by
Ams adaptersAms adapters
Ams adaptersBruno Alló Bacarini
264 views62 slides
Simplifying & accelerating application development with MongoDB's intelligent... by
Simplifying & accelerating application development with MongoDB's intelligent...Simplifying & accelerating application development with MongoDB's intelligent...
Simplifying & accelerating application development with MongoDB's intelligent...Maxime Beugnet
889 views60 slides

Similar to Solutions for bi-directional integration between Oracle RDBMS & Apache Kafka(20)

Solutions for bi-directional integration between Oracle RDBMS and Apache Kafk... by confluent
Solutions for bi-directional integration between Oracle RDBMS and Apache Kafk...Solutions for bi-directional integration between Oracle RDBMS and Apache Kafk...
Solutions for bi-directional integration between Oracle RDBMS and Apache Kafk...
confluent1.7K views
OSCON 2011 CouchApps by Bradley Holt
OSCON 2011 CouchAppsOSCON 2011 CouchApps
OSCON 2011 CouchApps
Bradley Holt5.4K views
Couchdb: No SQL? No driver? No problem by delagoya
Couchdb: No SQL? No driver? No problemCouchdb: No SQL? No driver? No problem
Couchdb: No SQL? No driver? No problem
delagoya3.2K views
Simplifying & accelerating application development with MongoDB's intelligent... by Maxime Beugnet
Simplifying & accelerating application development with MongoDB's intelligent...Simplifying & accelerating application development with MongoDB's intelligent...
Simplifying & accelerating application development with MongoDB's intelligent...
Maxime Beugnet889 views
[Coscup 2012] JavascriptMVC by Alive Kuo
[Coscup 2012] JavascriptMVC[Coscup 2012] JavascriptMVC
[Coscup 2012] JavascriptMVC
Alive Kuo1.3K views
Data Modeling and Relational to NoSQL by DATAVERSITY
Data Modeling and Relational to NoSQLData Modeling and Relational to NoSQL
Data Modeling and Relational to NoSQL
DATAVERSITY675 views
OData: Universal Data Solvent or Clunky Enterprise Goo? (GlueCon 2015) by Pat Patterson
OData: Universal Data Solvent or Clunky Enterprise Goo? (GlueCon 2015)OData: Universal Data Solvent or Clunky Enterprise Goo? (GlueCon 2015)
OData: Universal Data Solvent or Clunky Enterprise Goo? (GlueCon 2015)
Pat Patterson2.1K views
Data models in Angular 1 & 2 by Adam Klein
Data models in Angular 1 & 2Data models in Angular 1 & 2
Data models in Angular 1 & 2
Adam Klein651 views
mongodb-introduction by Tse-Ching Ho
mongodb-introductionmongodb-introduction
mongodb-introduction
Tse-Ching Ho1.9K views
MongoDB Aggregation Framework by Caserta
MongoDB Aggregation FrameworkMongoDB Aggregation Framework
MongoDB Aggregation Framework
Caserta 7.8K views
CouchDB Mobile - From Couch to 5K in 1 Hour by Peter Friese
CouchDB Mobile - From Couch to 5K in 1 HourCouchDB Mobile - From Couch to 5K in 1 Hour
CouchDB Mobile - From Couch to 5K in 1 Hour
Peter Friese7.5K views
Ws rest by patriknw
Ws restWs rest
Ws rest
patriknw402 views
Introduction to CouchDB by OpusVL
Introduction to CouchDBIntroduction to CouchDB
Introduction to CouchDB
OpusVL1.4K views
SDKs, the good the bad the ugly - Japan by tristansokol
SDKs, the good the bad the ugly - JapanSDKs, the good the bad the ugly - Japan
SDKs, the good the bad the ugly - Japan
tristansokol275 views
Stop the noise! - Introduction to the JSON:API specification in Drupal by Björn Brala
Stop the noise! - Introduction to the JSON:API specification in DrupalStop the noise! - Introduction to the JSON:API specification in Drupal
Stop the noise! - Introduction to the JSON:API specification in Drupal
Björn Brala247 views
Javascript Everywhere From Nose To Tail by Cliffano Subagio
Javascript Everywhere From Nose To TailJavascript Everywhere From Nose To Tail
Javascript Everywhere From Nose To Tail
Cliffano Subagio3.8K views
비동기 회고 발표자료 by Benjamin Kim
비동기 회고 발표자료비동기 회고 발표자료
비동기 회고 발표자료
Benjamin Kim5.1K views

More from Guido Schmutz

30 Minutes to the Analytics Platform with Infrastructure as Code by
30 Minutes to the Analytics Platform with Infrastructure as Code30 Minutes to the Analytics Platform with Infrastructure as Code
30 Minutes to the Analytics Platform with Infrastructure as CodeGuido Schmutz
624 views16 slides
Event Hub (i.e. Kafka) in Modern Data (Analytics) Architecture by
Event Hub (i.e. Kafka) in Modern Data (Analytics) ArchitectureEvent Hub (i.e. Kafka) in Modern Data (Analytics) Architecture
Event Hub (i.e. Kafka) in Modern Data (Analytics) ArchitectureGuido Schmutz
2.2K views44 slides
Location Analytics - Real-Time Geofencing using Apache Kafka by
Location Analytics - Real-Time Geofencing using Apache KafkaLocation Analytics - Real-Time Geofencing using Apache Kafka
Location Analytics - Real-Time Geofencing using Apache KafkaGuido Schmutz
2.8K views48 slides
Location Analytics Real-Time Geofencing using Kafka by
Location Analytics Real-Time Geofencing using KafkaLocation Analytics Real-Time Geofencing using Kafka
Location Analytics Real-Time Geofencing using KafkaGuido Schmutz
984 views47 slides
Fundamentals Big Data and AI Architecture by
Fundamentals Big Data and AI ArchitectureFundamentals Big Data and AI Architecture
Fundamentals Big Data and AI ArchitectureGuido Schmutz
1.2K views50 slides
Location Analytics - Real Time Geofencing using Apache Kafka by
Location Analytics - Real Time Geofencing using Apache KafkaLocation Analytics - Real Time Geofencing using Apache Kafka
Location Analytics - Real Time Geofencing using Apache KafkaGuido Schmutz
2.6K views40 slides

More from Guido Schmutz(10)

30 Minutes to the Analytics Platform with Infrastructure as Code by Guido Schmutz
30 Minutes to the Analytics Platform with Infrastructure as Code30 Minutes to the Analytics Platform with Infrastructure as Code
30 Minutes to the Analytics Platform with Infrastructure as Code
Guido Schmutz624 views
Event Hub (i.e. Kafka) in Modern Data (Analytics) Architecture by Guido Schmutz
Event Hub (i.e. Kafka) in Modern Data (Analytics) ArchitectureEvent Hub (i.e. Kafka) in Modern Data (Analytics) Architecture
Event Hub (i.e. Kafka) in Modern Data (Analytics) Architecture
Guido Schmutz2.2K views
Location Analytics - Real-Time Geofencing using Apache Kafka by Guido Schmutz
Location Analytics - Real-Time Geofencing using Apache KafkaLocation Analytics - Real-Time Geofencing using Apache Kafka
Location Analytics - Real-Time Geofencing using Apache Kafka
Guido Schmutz2.8K views
Location Analytics Real-Time Geofencing using Kafka by Guido Schmutz
Location Analytics Real-Time Geofencing using KafkaLocation Analytics Real-Time Geofencing using Kafka
Location Analytics Real-Time Geofencing using Kafka
Guido Schmutz984 views
Fundamentals Big Data and AI Architecture by Guido Schmutz
Fundamentals Big Data and AI ArchitectureFundamentals Big Data and AI Architecture
Fundamentals Big Data and AI Architecture
Guido Schmutz1.2K views
Location Analytics - Real Time Geofencing using Apache Kafka by Guido Schmutz
Location Analytics - Real Time Geofencing using Apache KafkaLocation Analytics - Real Time Geofencing using Apache Kafka
Location Analytics - Real Time Geofencing using Apache Kafka
Guido Schmutz2.6K views
Building Event-Driven (Micro) Services with Apache Kafka by Guido Schmutz
Building Event-Driven (Micro) Services with Apache KafkaBuilding Event-Driven (Micro) Services with Apache Kafka
Building Event-Driven (Micro) Services with Apache Kafka
Guido Schmutz1.4K views
Stream Processing – Concepts and Frameworks by Guido Schmutz
Stream Processing – Concepts and FrameworksStream Processing – Concepts and Frameworks
Stream Processing – Concepts and Frameworks
Guido Schmutz1.9K views
Kafka as an Event Store - is it Good Enough? by Guido Schmutz
Kafka as an Event Store - is it Good Enough?Kafka as an Event Store - is it Good Enough?
Kafka as an Event Store - is it Good Enough?
Guido Schmutz10.2K views
Introduction to Stream Processing by Guido Schmutz
Introduction to Stream ProcessingIntroduction to Stream Processing
Introduction to Stream Processing
Guido Schmutz2.5K views

Recently uploaded

SUPER STORE SQL PROJECT.pptx by
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptxkhan888620
12 views16 slides
CRIJ4385_Death Penalty_F23.pptx by
CRIJ4385_Death Penalty_F23.pptxCRIJ4385_Death Penalty_F23.pptx
CRIJ4385_Death Penalty_F23.pptxyvettemm100
6 views24 slides
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation by
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented GenerationDataScienceConferenc1
7 views29 slides
Short Story Assignment by Kelly Nguyen by
Short Story Assignment by Kelly NguyenShort Story Assignment by Kelly Nguyen
Short Story Assignment by Kelly Nguyenkellynguyen01
19 views17 slides
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdf by
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdfVikas 500 BIG DATA TECHNOLOGIES LAB.pdf
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdfvikas12611618
8 views30 slides
Organic Shopping in Google Analytics 4.pdf by
Organic Shopping in Google Analytics 4.pdfOrganic Shopping in Google Analytics 4.pdf
Organic Shopping in Google Analytics 4.pdfGA4 Tutorials
11 views13 slides

Recently uploaded(20)

SUPER STORE SQL PROJECT.pptx by khan888620
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptx
khan88862012 views
CRIJ4385_Death Penalty_F23.pptx by yvettemm100
CRIJ4385_Death Penalty_F23.pptxCRIJ4385_Death Penalty_F23.pptx
CRIJ4385_Death Penalty_F23.pptx
yvettemm1006 views
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation by DataScienceConferenc1
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
Short Story Assignment by Kelly Nguyen by kellynguyen01
Short Story Assignment by Kelly NguyenShort Story Assignment by Kelly Nguyen
Short Story Assignment by Kelly Nguyen
kellynguyen0119 views
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdf by vikas12611618
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdfVikas 500 BIG DATA TECHNOLOGIES LAB.pdf
Vikas 500 BIG DATA TECHNOLOGIES LAB.pdf
vikas126116188 views
Organic Shopping in Google Analytics 4.pdf by GA4 Tutorials
Organic Shopping in Google Analytics 4.pdfOrganic Shopping in Google Analytics 4.pdf
Organic Shopping in Google Analytics 4.pdf
GA4 Tutorials11 views
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M... by DataScienceConferenc1
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
Ukraine Infographic_22NOV2023_v2.pdf by AnastosiyaGurin
Ukraine Infographic_22NOV2023_v2.pdfUkraine Infographic_22NOV2023_v2.pdf
Ukraine Infographic_22NOV2023_v2.pdf
AnastosiyaGurin1.3K views
3196 The Case of The East River by ErickANDRADE90
3196 The Case of The East River3196 The Case of The East River
3196 The Case of The East River
ErickANDRADE9011 views
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx by DataScienceConferenc1
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
Cross-network in Google Analytics 4.pdf by GA4 Tutorials
Cross-network in Google Analytics 4.pdfCross-network in Google Analytics 4.pdf
Cross-network in Google Analytics 4.pdf
GA4 Tutorials6 views
Chapter 3b- Process Communication (1) (1)(1) (1).pptx by ayeshabaig2004
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptx
ayeshabaig20045 views
Advanced_Recommendation_Systems_Presentation.pptx by neeharikasingh29
Advanced_Recommendation_Systems_Presentation.pptxAdvanced_Recommendation_Systems_Presentation.pptx
Advanced_Recommendation_Systems_Presentation.pptx
UNEP FI CRS Climate Risk Results.pptx by pekka28
UNEP FI CRS Climate Risk Results.pptxUNEP FI CRS Climate Risk Results.pptx
UNEP FI CRS Climate Risk Results.pptx
pekka2811 views

Solutions for bi-directional integration between Oracle RDBMS & Apache Kafka

  • 1. BASEL | BERN | BRUGG | BUCHAREST | COPENHAGEN | DÜSSELDORF | FRANKFURT A.M. | FREIBURG I.BR. GENEVA | HAMBURG | LAUSANNE | MANNHEIM | MUNICH | STUTTGART | VIENNA | ZURICH http://guidoschmutz@wordpress.com@gschmutz Solutions for bi-directional integration between Oracle RDBMS & Apache Kafka Guido Schmutz DOAG Konferenz 2019
  • 2. Agenda 1. Introduction 2. Blueprints Oracle RDBMS => Apache Kafka 3. Blueprints Apache Kafka => Oracle RDBMS 4. Summary
  • 3. BASEL | BERN | BRUGG | BUKAREST | DÜSSELDORF | FRANKFURT A.M. | FREIBURG I.BR. | GENF HAMBURG | KOPENHAGEN | LAUSANNE | MANNHEIM | MÜNCHEN | STUTTGART | WIEN | ZÜRICH Guido Working at Trivadis for more than 22 years Consultant, Trainer, Platform Architect for Java, Oracle, SOA and Big Data / Fast Data Oracle Groundbreaker Ambassador & Oracle ACE Director @gschmutz guidoschmutz.wordpress.com 171st edition
  • 6. Microservices / Modern Applications • Highly decoupled • Independently deployable • Bounded Context/Aggregate (DDD) • Responsible for their data • Favour asynchronous, event-driven interaction over synchronous • Smart Endpoints and Dump Pipes • Use Anti-Corruption Layer (ACL) if no fit! M3M2 ACL Event Hub M1
  • 7. Microservices / Modern Applications Integrate with Traditional System M3M2 ACL Event Hub M1 ACL • Highly decoupled • Independently deployable • Bounded Context/Aggregate (DDD) • Responsible for their data • Favour asynchronous, event-driven interaction over synchronous • Smart Endpoints and Dump Pipes • Use Anti-Corruption Layer (ACL) if no fit! Traditional App
  • 8. Use Case Customer Microservice { } Customer API CustomerCustomer Logic Order Processing System { } Order API OrderOrder Logic REST REST Event Hub Customer Mat View Order Customer (compacted) Notification Microservice Notification Logic Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense “Modern Apps”Traditional Apps (Legacy)
  • 9. MessageMessageMessageMessage MessageMessage Properties - Message Message Message A1 A2 A3 Message B1 B2 B3 B4 A1 A2 A3 B B1 B2 B3 B4 Table A A1 A2 A3 Table B B1 B2 B3 B4 FlatDB Model Aggregate Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 10. Properties - Latency Traditional System Event Hub Data Flow RDBMS latency latency Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 11. Properties – Anti-Corruption Layer (ACL) Traditional System Event Hub Data Flow RDBMS Traditional System Event Hub Data Flow RDBMS ACL ACL Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense Examples: • View Layer • Storage Procedure • JSON Support in DB • … Examples: • StreamSets • Kafka Connect • Kafka Streams / KSQL • … Database Dataflow
  • 12. Blueprints Oracle RDBMS => Apache Kafka
  • 13. Blueprints Oracle RDBMS => Apache Kafka (DB-K) Customer Microservice { } Customer API CustomerCustomer Logic Order Processing System { } Order API OrderOrder Logic REST REST Event Hub Customer Mat View Order (compacted) Customer (compacted) Notification Microservice Notification Logic Schema Registry DB-K_1: Polling of RDBMS table/view DB-K_2: Change Data Capture (CDC) on RDBMS DB-K_3: Polling of RDBMS API DB-K_4: Produce to Event Hub from RDBMS DB-K_5: RDBMS Que with bridge to Event Hub DB_K-1 DB_K-2 DB_K-3 DB_K-4 DB_K-5
  • 14. DB-K_1: Polling of RDBMS table/view Event Hub Stream Data Integration API Applications / Data Sources Data FlowRDBMS Application Logic Stream Data Integration & Analytics Stream Analytics Data Flow Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 15. Event Hub Stream Data Integration API Applications / Data Sources Data FlowRDBMS Application Logic Stream Data Integration & Analytics Stream Analytics Data Flow Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense DB-K_1: Polling of RDBMS table/view Kafka Connect with JDBC Source Connector
  • 16. Kafka Connect & JDBC Connector • Many connectors available • Single Message Transforms (SMT) • declarative style, simple data flows • framework is part of Apache Kafka
  • 17. DB-K_1 – Configure JDBC Connector #!/bin/bash curl -X "POST" "http://192.168.69.138:8083/connectors" -H "Content-Type: application/json" -d $'{ "name": "jdbc-driver-source", "config": { "connector.class": "JdbcSourceConnector", "connection.url":"jdbc:oracle:thin//oracle-db:1521/XEPDB1", "mode": "timestamp", "timestamp.column.name":”modified_at", "table.whitelist":”order", "validate.non.null":"false", "topic.prefix":”orderprocessing_", "key.converter":"org.apache.kafka.connect.json.JsonConverter", "key.converter.schemas.enable": "false", "value.converter":"org.apache.kafka.connect.json.JsonConverter", "value.converter.schemas.enable": "false", "name": "jdbc-driver-source", "transforms":"createKey,extractInt", "transforms.createKey.type":"org.apache.kafka.connect.transforms.ValueToKey", "transforms.createKey.fields":"id", "transforms.extractInt.type":"org.apache.kafka.connect.transforms.ExtractField$Key", "transforms.extractInt.field":"id" } }'
  • 18. DB-K_2: Change Data Capture (CDC) on RDBMS Stream Data Integration & Analytics Stream Analytics Event Hub Stream Data Integration API Data Flow Application / Data Sources Data Flow Application Logic RDBMS Redo Log REST to Event Hub Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 19. Stream Data Integration & Analytics Stream Analytics Event Hub Stream Data Integration API Data Flow Application / Data Sources Data Flow Application Logic RDBMS Redo Log REST to Event Hub Rest Proxy DB-K_2: Change Data Capture (CDC) on RDBMS Using Oracle GoldenGate Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense Alternatives: StreamSets Data Collector Attunity Debezium …
  • 20. DB-K_3: Polling of RDBMS API Event Hub Stream Data Integration API Applications / Data Sources Data Flow RDBMS Application Logic API Stream Data Integration & Analytics Stream Analytics Data Flow Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 21. Event Hub Stream Data Integration API Applications / Data Sources Data Flow RDBMS Application Logic API Stream Data Integration & Analytics Stream Analytics Data Flow DB-K_3: Polling of RDBMS API StreamSets invokes Oracle Rest Data Service Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 22. Oracle REST Data Services (ORDS) • makes it easy to develop modern REST interfaces for relational data in the Oracle Database and the Oracle Database 18c JSON Document Store • ORDS maps HTTP(S) verbs (GET, POST, PUT, DELETE, etc.) to database transactions and returns any results formatted using JSON • Java middle tier application on WebLogic, Tomcat, Docker, Standalone (for development)
  • 23. DB-K_3 – Setup ORDS (I) ORDS.ENABLE_SCHEMA( p_enabled => TRUE, p_schema => 'ORDER_PROCESSING', p_url_mapping_type => 'BASE_PATH', p_url_mapping_pattern => 'order_processing', p_auto_rest_auth => FALSE); ORDS.DEFINE_MODULE( p_module_name => 'order_processing', p_base_path => '/orders/', p_items_per_page => 25, p_status => 'PUBLISHED', p_comments => NULL); ORDS.DEFINE_TEMPLATE( p_module_name => 'order_processing', p_pattern => 'changes/:offset', p_priority => 0, p_etag_type => 'HASH', p_etag_query => NULL, p_comments => NULL);
  • 24. DB-K_3 – Setup ORDS (II) ORDS.DEFINE_HANDLER( p_module_name => 'order_processing', p_pattern => 'changes/:offset', p_method => 'GET', p_source_type => 'resource/lob', p_items_per_page => 25, p_source => 'SELECT ''application/json'', json_object(''orderId'' VALUE po.id, ''orderDate'' VALUE po.order_date, ''orderMode'' VALUE po.order_mode, ''customer'' VALUE json_object(''firstName'' VALUE cu.first_name, ''lastName'' VALUE cu.last_name ''emailAddress'' VALUE cu.email), ''lineItems'' VALUE (SELECT json_arrayagg( json_object(''ItemNumber'' VALUE li.id, ''Product'' VALUE json_object(''id'' VALUE li.product_id, ''name'' VALUE li.product_name, ''unitPrice'' VALUE li.unit_price), ''quantity'' VALUE li.quantity)) FROM order_item_t li WHERE po.id = li.order_id), ''offset'' VALUE TO_CHAR(po.modified_at, ''YYYYMMDDHH24MISS'')) FROM order_t po LEFT JOIN customer_t cu ON (po.customer_id = cu.id) WHERE po.modified_at > TO_DATE(:offset, ''YYYYMMDDHH24MISS'')'
  • 25. StreamSets Data Collector • GUI-based, drag-and drop Data Flow Pipelines • Both stream and batch processing • custom sources, sinks, processors • Monitoring and Error Detection
  • 26. DB-K_4: Produce to Event Hub from RDBMS Event Hub Stream Data Integration API Applications / Data Sources RDBMS Application Logic API Stream Data Integration & Analytics Stream Analytics Data Flow REST to Event Hub Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 27. Event Hub Stream Data Integration API Applications / Data Sources RDBMS Application Logic API Stream Data Integration & Analytics Stream Analytics Data Flow REST to Event Hub Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense DB-K_4: Produce to Event Hub from RDBMS Native Kafka Producer using Java in DB Does not feel right!
  • 28. Event Hub Stream Data Integration API Applications / Data Sources RDBMS Application Logic API Stream Data Integration & Analytics Stream Analytics Data Flow REST to Event Hub Rest Proxy ? Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense DB-K_4: Produce to Event Hub from RDBMS Invoke REST Proxy from PL/SQL Invoking a REST Service from DB not well-supported
  • 29. Event Hub Stream Data Integration API Applications / Data Sources RDBMS Application Logic API Stream Data Integration & Analytics Stream Analytics Data Flow REST to Event Hub Oracle Big Data SQL Coming soon … DB-K_4: Produce to Event Hub from RDBMS Oracle Big Data SQL integrates with Kafka Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 30. DB-K_5: RDBMS Queue with bridge to Event Hub Stream Data Integration & Analytics Stream Analytics Event Hub Stream Data Integration API Data Flow Application / Data Sources Data Flow Application Logic RDBMS Queue Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 31. DB-K_5: RDBMS Queue with bridge to Event Hub Oracle Advanced Queuing & Kafka Connect JMS Stream Data Integration & Analytics Stream Analytics Event Hub Stream Data Integration API Data Flow Application / Data Sources Data Flow Application Logic RDBMS QueueAQ Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 32. BEGIN dbms_aqadm.create_queue_table ( queue_table => 'ORDER_QT', queue_payload_type => 'SYS.AQ$_JMS_TEXT_MESSAGE', sort_list => 'PRIORITY,ENQ_TIME', multiple_consumers => FALSE, message_grouping => dbms_aqadm.none ); END; / DB-K_5 – Setup AQ and Kafka Connect (I) BEGIN dbms_aqadm.create_queue ( queue_name => 'ORDER_AQ', queue_table => 'ORDER_QT', max_retries => 1, retry_delay => 2, -- seconds retention_time => 60*60*24*7 -- 1w ); END; / BEGIN dbms_aqadm.start_queue( queue_name => 'ORDER_AQ', enqueue => TRUE, dequeue => TRUE ); END; /
  • 33. curl -X "POST" "$DOCKER_HOST_IP:8083/connectors" -H "Content-Type: application/json" --data '{ "name": "jms-source", "config": { "name": "jms-source", "connector.class": "com.datamountaineer...JMSSourceConnector", "connect.jms.initial.context.factory": "oracle.jms.AQjmsInitialContextFactory", "connect.jms.initial.context.extra.params": "db_url=jdbc:oracle:thin:@//192.168.73.86:1521/XEPDB1,java.naming.security.princ ipal=order_processing,java.naming.security.credentials=order_processing", "tasks.max": "1", "connect.jms.connection.factory": "ConnectionFactory", "connect.jms.url": "jdbc:oracle:thin:@//192.168.73.86:1521/XEPDB1", "connect.jms.kcql": "INSERT INTO order SELECT * FROM order_aq WITHTYPE QUEUE WITHCONVERTER=`com.datamountaineer.streamreactor.connect.converters.source.JsonS impleConverter`" } }' DB-K_5 – Setup AQ and Kafka Connect (I)
  • 34. DB-K_5: RDBMS Queue with bridge to Event Hub Oracle AQ with Kafka API & MirrorMaker Stream Data Integration & Analytics Stream Analytics Event Hub Stream Data Integration API Data Flow Application / Data Sources Data Flow Application Logic RDBMS Queue Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense AQ (Kafka API) Oracle works on a Kafka API for Advanced Queuing
  • 35. Blueprints Apache Kafka => Oracle RDBMS
  • 36. Blueprints Apache Kafka => Oracle RDBMS (K-DB) Customer Microservice { } Customer API CustomerCustomer Logic Order Processing System { } Order API OrderOrder Logic REST REST Event Hub Customer Mat View Order (compacted) Customer (compacted) Notification Microservice Notification Logic Schema Registry K-DB_1: Write to RDBMS table/view K-DB_2: Write over RDBMS API K-DB_3: Consume from Event Hub K-DB_4: Event Hub with bridge to RDBMS Queue K_DB-1 K_DB-2 K_DB-3 K_DB-4
  • 37. K-DB_1: Write to RDBMS table/view Event Hub Stream Data Integration API Applications / Data Sources Data FlowRDBMS Application Logic Stream Data Integration & Analytics Stream Analytics Data Flow Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 38. Event Hub Stream Data Integration API Applications / Data Sources Data FlowRDBMS Application Logic Stream Data Integration & Analytics Stream Analytics Data Flow Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense K-DB_1: Write to RDBMS table/view Kafka Connect and JDBC Sink Connector
  • 39. K-DB_2: Write over RDBMS API Event Hub Stream Data Integration API Applications / Data Sources Data Flow RDBMS Application Logic API Stream Data Integration & Analytics Stream Analytics Data Flow Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 40. Event Hub Stream Data Integration API Applications / Data Sources Data Flow RDBMS Application Logic API Stream Data Integration & Analytics Stream Analytics Data Flow Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense K-DB_2: Write over RDBMS API Kafka Connect invokes Oracle Rest Data Service
  • 41. DB-K_2 – Setup ORDS (I) ORDS.DEFINE_HANDLER( p_module_name => 'customer', p_pattern => 'customer', p_method => 'POST', p_source_type => 'plsql/block', p_items_per_page => 0, p_source => 'DECLARE L_CU CLOB := :body_text; BEGIN INSERT INTO customer_t (id, first_name, last_name, title, notification_on, email, slack_handle, twitter_handle) SELECT * FROM json_table(L_CU, ''$'' COLUMNS ( id NUMBER PATH ''$.id'', first_name VARCHAR2 PATH ''$.firstName'', last_name VARCHAR2 PATH ''$.lastName'', title VARCHAR2 PATH ''$.title'', notification_on VARCHAR2 PATH ''$.notificationOn'', email VARCHAR2 PATH ''$.email'', slack_handle VARCHAR2 PATH ''$.slackHandle'', twitter_handle VARCHAR2 PATH ''$.twitterHandle'' )); INSERT INTO address_t (customer_id, id, street, nr, city, postcode, country) SELECT * FROM json_table( ... )
  • 42. K-DB_3: Consume from Event Hub Event Hub Stream Data Integration API Applications / Data Sources RDBMS Application Logic API Stream Data Integration & Analytics Stream Analytics Data Flow REST to Event Hub Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 43. Event Hub Stream Data Integration API Applications / Data Sources RDBMS Application Logic API Stream Data Integration & Analytics Stream Analytics Data Flow REST to Event Hub Oracle Big Data SQL Coming soon… K-DB_3: Consume from Event Hub Oracle Big Data SQL exposes topic as table Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 44. K-DB_4: Event Hub with bridge to RDBMS queue Stream Data Integration & Analytics Stream Analytics Event Hub Stream Data Integration API Data Flow Application / Data Sources Data Flow Application Logic RDBMS Queue Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 45. Stream Data Integration & Analytics Stream Analytics Event Hub Stream Data Integration API Data Flow Application / Data Sources Data Flow Application Logic RDBMS QueueAQ K-DB_4: Event Hub with bridge to RDBMS queue Oracle Advanced Queuing & Kafka Connect JMS Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 46. Stream Data Integration & Analytics Stream Analytics Event Hub Stream Data Integration API Data Flow Application / Data Sources Data Flow Application Logic RDBMS QueueAQ (Kafka API) Oracle works on a Kafka API for Advanced Queuing K-DB_4: Event Hub with bridge to RDBMS queue Oracle AQ with Kafka API & MirrorMaker Flat Aggregate Low Latency High Latency DB Dataflow Message Latency ACL Open Source CommercialLicense
  • 48. Summary Customer Microservice { } Customer API CustomerCustomer Logic Order Processing System { } Order API OrderOrder Logic REST REST Event Hub Customer Mat View Order (compacted) Customer (compacted) Notification Microservice Notification Logic Schema Registry K-DB_1: Write to RDBMS table/view K-DB_2: Write over RDBMS API K-DB_3: Consume from Event Hub K-DB_4: Event Hub with bridge to RDBMS Queue K_DB-1 K_DB-2 K_DB-3 K_DB-4 DB_K-1 DB_K-2 DB_K-3 DB_K-4 DB_K-5 https://github.com/gschmutz/various-demos/tree/master/bidirectional-integration-oracle-kafka DB-K_1: Polling of RDBMS table/view DB-K_2: Change Data Capture (CDC) on RDBMS DB-K_3: Polling of RDBMS API DB-K_4: Produce to Event Hub from RDBMS DB-K_5: RDBMS Queue with bridge to Event Hub
  • 49. Bulk Source Ref Architecture Data Platform Service Event Stream Bulk Data Flow Event Source Location DB Extract File Weather DB IoT Data Mobile Apps Social File Import / SQL Import Consumer BI Apps Data Science Workbench Enterprise App Enterprise Data Warehouse SQL / Search SQL “Native” Raw RDBMS “SQL” / Search Service Event Hub Hadoop ClusterdHadoop ClusterBig Data Platform SQL Export Storage Storage Raw Refined/ UsageOpt Microservice Cluster Stream Processing Cluster Stream Processor Model / State Edge Node Rules Event Hub Storage Governance Data Catalog Rules Engine Parallel Processing Query Engine Microservice Data { } API Event Stream Event Stream Modern Data Platform Event Stream
  • 50. Bulk Source Ref Architecture Data Platform Service Event Stream Bulk Data Flow Event Source Location DB Extract File Weather DB IoT Data Mobile Apps Social File Import / SQL Import Consumer BI Apps Data Science Workbench Enterprise App Enterprise Data Warehouse SQL / Search SQL “Native” Raw RDBMS “SQL” / Search Service sEvent Hub Hadoop ClusterdHadoop ClusterBig Data Platform SQL Export Storage Storage Raw Refined/ UsageOpt Microservice Cluster Stream Processing Cluster Stream Processor Model / State Edge Node Rules Event Hub Storage Governance Data Catalog Rules Engine Parallel Processing Query Engine Microservice Data { } API Event Stream Event Stream Modern Data Platform Event Stream