Apache Kafka is a popular distributed streaming data platform. A Kafka cluster stores streams of records (messages) in categories called topics. It is the architectural backbone for integrating streaming data with a Data Lake, Microservices and Stream Processing. Data sources flowing into Kafka are often native data streams such as social media streams, telemetry data, financial transactions and many others. But these data stream only contain part of the information. A lot of data necessary in stream processing is stored in traditional systems backed by relational databases. To implement new and modern, real-time solutions, an up-to-date view of that information is needed. So how do we make sure that information can flow between the RDBMS and Kafka, so that changes are available in Kafka as soon as possible in near-real-time? This session will present different approaches for integrating relational databases with Kafka, such as Kafka Connect, Oracle GoldenGate and bridging Kafka with Oracle Advanced Queuing (AQ).