Monitoring Vegetation Water Content by Using Optical Vegetation Index and Microwave Vegetation Index:   Field Experiment a...
Outline <ul><li>Background and motivation </li></ul><ul><li>Microwave vegetation index </li></ul><ul><li>Field Experiment ...
Background <ul><li>Global vegetation information is closely related to  </li></ul><ul><ul><li>Food productivity, famine, …...
Motivation <ul><li>Vegetation parameters observed by satellites: </li></ul><ul><ul><li>VIS/IR: fractional coverage, NDVI, ...
VWC, MVI, NDVI, NDWI <ul><li>Microwave vegetation index by Shi </li></ul><ul><li>NDVI: VIS (620 - 670nm) & NIR (841 - 876 ...
Field  Experiment --Instruments and setting <ul><li>Brightness temperature observed by Ground Based Microwave Radiometer, ...
Experiment design 1 2 3
Experiment design <ul><li>Observing winter wheat </li></ul><ul><ul><li>One kind of main crops </li></ul></ul><ul><ul><li>V...
Vegetation <ul><li>01-16 01-19 01-24 02-07 </li></ul>11-29 12-08 12-13 12-20
Observed Results VWC  ~ NDVI NDVI shows a poor correlation to the VWC, with an R-square less than 0.2.  It is not good to ...
Observed Results VWC  ~ NDWI NDWI has a good correlation to VWC, while band 5 has bigger R value VWC information maybe can...
Observed Results VWC  ~ MWI VWC = linear regression function of MVI High R for X-C band
Application Domain  <ul><li>AMPEX </li></ul><ul><ul><li>Mongolia; </li></ul></ul><ul><ul><li>Relative homogenous </li></ul...
Application: VWC retrieved from JAXA algorithm Vs. in situ <ul><li>VWC provided by JAXA algorithm is comparable to the in ...
Results: VWC from MVI-based method A3 H7 MVI(10,6) MVI (18,10) High R for X-C band
Remark <ul><li>Field experiment which observing winter wheat development by using microwave radiometer and VIS/IF spectror...
Thank you for your attention!
Upcoming SlideShare
Loading in …5
×

MONITORING VEGETATION WATER CONTENT BY USING OPTICAL VEGETATION INDEX AND MICROWAVE VEGETATION INDEX FIELD EXPERIMENTS AND APPLICATIONS.ppt

686 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
686
On SlideShare
0
From Embeds
0
Number of Embeds
10
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • E Emergence 0 29-Nov-06 DR Floral initiation (double ridge) 35 3-Jan-07 TS Terminal spikelet 60 28-Jan-07 First node 80 17-Feb-07 HD Heading 120 29-Mar-07 A Anthesis 130 8-Apr-07 PM Physiological maturity 170 18-May-07
  • MONITORING VEGETATION WATER CONTENT BY USING OPTICAL VEGETATION INDEX AND MICROWAVE VEGETATION INDEX FIELD EXPERIMENTS AND APPLICATIONS.ppt

    1. 1. Monitoring Vegetation Water Content by Using Optical Vegetation Index and Microwave Vegetation Index: Field Experiment and Application Hui Lu ( Tsinghua University, China ) Toshio Koike & Hiroyuki Tsutsui ( The University of Tokyo ) Hedeyuki Fujii ( JAXA )
    2. 2. Outline <ul><li>Background and motivation </li></ul><ul><li>Microwave vegetation index </li></ul><ul><li>Field Experiment </li></ul><ul><ul><li>Setting and instruments </li></ul></ul><ul><ul><li>Observed Results </li></ul></ul><ul><li>Application </li></ul><ul><ul><li>Mongolia site </li></ul></ul><ul><li>Remark </li></ul>
    3. 3. Background <ul><li>Global vegetation information is closely related to </li></ul><ul><ul><li>Food productivity, famine, …… </li></ul></ul><ul><ul><li>Environment, ecological system, …. </li></ul></ul><ul><li>In land surface modeling and remote sensing retrieval, vegetation is </li></ul><ul><ul><li>A key variable of land surface remote sensing </li></ul></ul><ul><ul><ul><li>Soil moisture, soil temperature, vegetation water content </li></ul></ul></ul><ul><ul><li>A key parameter in GCM, hydrology and land surface scheme </li></ul></ul><ul><ul><ul><li>LAI, fPAR, ET, precipitation interception </li></ul></ul></ul><ul><ul><li>A key parameter in terrestrial ecosystem model </li></ul></ul><ul><ul><ul><li>Carbon cycle </li></ul></ul></ul>
    4. 4. Motivation <ul><li>Vegetation parameters observed by satellites: </li></ul><ul><ul><li>VIS/IR: fractional coverage, NDVI, LAI, NDWI, EVI </li></ul></ul><ul><ul><li>MW: Vegetation water content (VWC), Microwave vegetation index (MVI) </li></ul></ul><ul><li>MW RS has daily global coverage and deeper penetration depth </li></ul><ul><ul><li>Complement vegetation information to VIS/IR </li></ul></ul><ul><li>What the relationship between these parameters? </li></ul><ul><li>Accurate VWC is useful in </li></ul><ul><ul><li>Improving soil moisture retrieval algorithm </li></ul></ul><ul><ul><li>Improving LDAS </li></ul></ul>
    5. 5. VWC, MVI, NDVI, NDWI <ul><li>Microwave vegetation index by Shi </li></ul><ul><li>NDVI: VIS (620 - 670nm) & NIR (841 - 876 nm) </li></ul><ul><li>NDWI:SWIR in band 5 (1230-1250 nm) or band 6 (1628-1652 nm) </li></ul>
    6. 6. Field Experiment --Instruments and setting <ul><li>Brightness temperature observed by Ground Based Microwave Radiometer, at 6.925, 10.65, 18.7, 23.8, 36.5, 89 GHz </li></ul><ul><li>VIS/IR reflectance measured by ASD FieldSpec Pro in a spectral range of 350nm – 2500nm </li></ul>
    7. 7. Experiment design 1 2 3
    8. 8. Experiment design <ul><li>Observing winter wheat </li></ul><ul><ul><li>One kind of main crops </li></ul></ul><ul><ul><li>VWC is not so big, C-band could penetrate. </li></ul></ul>Winter wheat development VWC was measured by sampling
    9. 9. Vegetation <ul><li>01-16 01-19 01-24 02-07 </li></ul>11-29 12-08 12-13 12-20
    10. 10. Observed Results VWC ~ NDVI NDVI shows a poor correlation to the VWC, with an R-square less than 0.2. It is not good to estimate VWC from NDVI observation!
    11. 11. Observed Results VWC ~ NDWI NDWI has a good correlation to VWC, while band 5 has bigger R value VWC information maybe can be estimated by NDWI 5, for vwc in [0,4]
    12. 12. Observed Results VWC ~ MWI VWC = linear regression function of MVI High R for X-C band
    13. 13. Application Domain <ul><li>AMPEX </li></ul><ul><ul><li>Mongolia; </li></ul></ul><ul><ul><li>Relative homogenous </li></ul></ul><ul><ul><li>VWC survey at 2003 Jul </li></ul></ul><ul><ul><li>and Aug; </li></ul></ul><ul><ul><li>160*120km; </li></ul></ul>
    14. 14. Application: VWC retrieved from JAXA algorithm Vs. in situ <ul><li>VWC provided by JAXA algorithm is comparable to the in situ observed VWC </li></ul><ul><li>Using as reference data to check the performance of MVI-based method </li></ul>
    15. 15. Results: VWC from MVI-based method A3 H7 MVI(10,6) MVI (18,10) High R for X-C band
    16. 16. Remark <ul><li>Field experiment which observing winter wheat development by using microwave radiometer and VIS/IF spectroradiometer simultaneously. </li></ul><ul><li>Comparing to in situ observed VWC </li></ul><ul><ul><li>NDVI show poor correlation </li></ul></ul><ul><ul><li>NDWI show good correlation </li></ul></ul><ul><ul><li>MVI show strong correlation </li></ul></ul><ul><li>MVI-based linear equation could provide VWC information, but the absolute values should be scaled </li></ul><ul><ul><li>Can be used to monitor the vegetation temporal variation </li></ul></ul><ul><ul><li>The coefficient of linear equation should be related to (vfc, vegetation type) </li></ul></ul><ul><li>Future work: </li></ul><ul><ul><li>Quantify the coefficient by each vegetation type (LSM classification, or real type) </li></ul></ul><ul><ul><li>Test for more observation sites (US site, MDB site, China) </li></ul></ul>
    17. 17. Thank you for your attention!

    ×