Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
modeling and applications OF swot satellite data <br />C. Lion1, K.M. Andreadis2, R. Fjørtoft3,<br />F. Lyard4, N. Pourthi...
SWOT mission<br />1<br />NASA and CNES, launch in 2019<br />970km orbit, 78°inclination, 22 days repeat<br />KaRIN: InSAR ...
2<br />Preparing the mission for hydrology<br />Modelisation and simulation for technical use<br />2. SAR amplitude image:...
Goals<br />Need for a simulator for scientific users (hydrology)<br />“Fast”: 3 months  3min<br />Easy to use: no need fo...
Simulator principle<br />Based on works of:<br />S. Biancamaria and M. Durand: swath calculation, principle<br />V. Enjolr...
Simulator principle<br />Based on works of:<br />S. Biancamaria and M. Durand: swath calculation, principle<br />V. Enjolr...
Simulator principle<br />Based on works of:<br />S. Biancamaria and M. Durand: swath calculation, principle<br />V. Enjolr...
Residual height errors<br />7<br />Taken into account<br />Roll<br />Baseline variation<br />Thermal noise<br />Geometric ...
Residual height errors: Roll<br />Roll<br />8<br />B<br />a<br />i<br />R<br />r1<br />r2<br />H<br />h<br />
Residual height errors<br />Baseline<br />9<br />E_b<br />B<br />i<br />R<br />r1<br />r2<br />H<br />h<br />
Residual height errors<br />Coherence loss<br />g = gSNR + gSQRN + gg<br />N number of looks<br />10<br />B<br />i<br />R<...
Simulator principle<br />Based on works of:<br />S. Biancamaria and M. Durand: swath calculation, principle<br />V. Enjolr...
Simulator principle<br />Based on works of:<br />S. Biancamaria and M. Durand: swath calculation, principle<br />V. Enjolr...
Simulator principle<br />Based on works of:<br />S. Biancamaria and M. Durand: swath calculation, principle<br />V. Enjolr...
Simulation: Ohio River<br />14<br />3 months modelizationcourtesy: K. Andreadis<br />40.5<br />40.5<br />40<br />40<br />L...
Assimilation methodology<br />15<br />Assimilating SWOT observations in a identical twin synthetic experiment<br />Ohio Ri...
16<br />Assimilation results<br />Water surface elevation along the river channel at two SWOT overpass times<br />208 Hour...
Conclusions<br />Simulation of SWOT data with more representative errors<br />The simulator is more user friendly: output ...
Thank for your attention<br />
Upcoming SlideShare
Loading in …5
×

igarss2011_lion.pptx

282 views

Published on

  • Be the first to comment

  • Be the first to like this

igarss2011_lion.pptx

  1. 1. modeling and applications OF swot satellite data <br />C. Lion1, K.M. Andreadis2, R. Fjørtoft3,<br />F. Lyard4, N. Pourthie3, J.-F. Crétaux1<br />1LEGOS/CNES, 2Ohio State University/JPL<br />3CNES, 4LEGOS/CNRS<br />
  2. 2. SWOT mission<br />1<br />NASA and CNES, launch in 2019<br />970km orbit, 78°inclination, 22 days repeat<br />KaRIN: InSAR Ka band<br />Wide swath altimeter<br />Ocean: “Low resolution” <br />meso-scale and submeso-scale<br />phenomena (10km and greater)<br />Hydrology: “High resolution”<br />surface area above (250m)² <br />rivers above 100m<br />970 km<br />
  3. 3. 2<br />Preparing the mission for hydrology<br />Modelisation and simulation for technical use<br />2. SAR amplitude image:<br /> Rhone river, France<br /> CNES/ Altamira information simulator<br />1. Radar cross section<br /> CNES/ CAP Gemini simulator<br />
  4. 4. Goals<br />Need for a simulator for scientific users (hydrology)<br />“Fast”: 3 months  3min<br />Easy to use: no need for heavy preparation of input data<br />Portable<br />Relatively realistic errors<br />Targets: deltas, rivers, lakes…<br />Output: water elevation<br />3<br />Simulator output: water height<br />The Amazon river, Brazil<br />
  5. 5. Simulator principle<br />Based on works of:<br />S. Biancamaria and M. Durand: swath calculation, principle<br />V. Enjolras: residual error calculation<br />4<br />
  6. 6. Simulator principle<br />Based on works of:<br />S. Biancamaria and M. Durand: swath calculation, principle<br />V. Enjolras: residual error calculation<br />5<br />
  7. 7. Simulator principle<br />Based on works of:<br />S. Biancamaria and M. Durand: swath calculation, principle<br />V. Enjolras: residual error calculation<br />6<br />
  8. 8. Residual height errors<br />7<br />Taken into account<br />Roll<br />Baseline variation<br />Thermal noise<br />Geometric decorrelation<br />BAQ noise<br />Satellite position<br />Not taken into account yet<br />Troposphere<br />Layover<br />Shadow<br />Processing (classification…)<br />….<br />
  9. 9. Residual height errors: Roll<br />Roll<br />8<br />B<br />a<br />i<br />R<br />r1<br />r2<br />H<br />h<br />
  10. 10. Residual height errors<br />Baseline<br />9<br />E_b<br />B<br />i<br />R<br />r1<br />r2<br />H<br />h<br />
  11. 11. Residual height errors<br />Coherence loss<br />g = gSNR + gSQRN + gg<br />N number of looks<br />10<br />B<br />i<br />R<br />r1<br />r2<br />H<br />h<br />
  12. 12. Simulator principle<br />Based on works of:<br />S. Biancamaria and M. Durand: swath calculation, principle<br />V. Enjolras: residual error calculation<br />11<br />
  13. 13. Simulator principle<br />Based on works of:<br />S. Biancamaria and M. Durand: swath calculation, principle<br />V. Enjolras: residual error calculation<br />12<br />m<br />
  14. 14. Simulator principle<br />Based on works of:<br />S. Biancamaria and M. Durand: swath calculation, principle<br />V. Enjolras: residual error calculation<br />13<br />
  15. 15. Simulation: Ohio River<br />14<br />3 months modelizationcourtesy: K. Andreadis<br />40.5<br />40.5<br />40<br />40<br />Latitude<br />Latitude<br />39.5<br />39.5<br />39<br />39<br />38.5<br />38.5<br />275<br />276<br />277<br />278<br />279<br />275<br />276<br />277<br />278<br />279<br />Longitude<br />Longitude<br />Input: Model LisFLOOD<br />Reference water height (m)<br />Output: Water height observed<br /> by SWOT (m)<br />
  16. 16. Assimilation methodology<br />15<br />Assimilating SWOT observations in a identical twin synthetic experiment<br />Ohio River study domain (only main stem)<br />LISFLOOD hydraulic model<br />Ensemble Kalman filter<br />Errors introduced to boundary inflows, channel width, depth and roughness<br />Observation errors from a Gaussian distribution N(0,5cm)<br />courtesy: K. Andreadis<br />
  17. 17. 16<br />Assimilation results<br />Water surface elevation along the river channel at two SWOT overpass times<br />208 Hours<br />280 Hours<br />Information is not always propagated down/up stream<br />Small ensemble size could partly be the reason <br />courtesy: K. Andreadis<br />
  18. 18. Conclusions<br />Simulation of SWOT data with more representative errors<br />The simulator is more user friendly: output format as input format, GUI, can be used with several models<br />Can be used for assimilations studies (estimate indirect valuables)<br />Need to improve the simulator: layover, decorrelation due to vegetation, troposphere …<br />17<br />
  19. 19. Thank for your attention<br />

×