Habib-IGARSS 2011 FR3-TR10.pptx


Published on

Published in: Technology, Education
1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • Location of Landsat footprint
  • Landsat data from winter 2005
  • Note ET from Sudd and Nile Delta in ALEXI, not captured in LDAS.
  • Note ET from Sudd and Nile Delta in ALEXI, not captured in LDAS.
  • Habib-IGARSS 2011 FR3-TR10.pptx

    1. 1. An Integrated Hydrological and Water Management Study of the Entire Nile River System – Lake Victoria to Nile Delta(IGARSS paper 1198: Session FR3-TR10)July 29, 2011Vancouver, Canada<br />Shahid Habib, NASA Goddard Space Flight Center<br />Ben Zaitchik, Johns Hopkins University<br />Clement Alo, Johns Hopkins University<br />MutluOzdogon, University of Wisconsin<br />Martha Anderson, US Department of Agriculture<br />Fritz Policelli, NASA Goddard Space Flight Center<br />
    2. 2. Introduction<br /><ul><li>Countries of the Nile basin face challenges related to hydrologic extremes and water resource planning.
    3. 3. NASA observations and tools can provide consistent, reliable estimates of hydrological states and fluxes, even in remote areas. This information can be applied to early warning systems and decision support.
    4. 4. Improved information on floods, droughts, and climate-induced changes in hydrology are critical for all countries.</li></li></ul><li>Partners, Users and Interested Parties<br />Partners<br />NASA<br />Johns Hopkins Global Water Program<br />USDA Hydrology and Remote Sensing Lab<br />University of Wisconsin<br />Users<br />The Regional Center for Mapping of Resources for Development<br />(The Nile Basin Initiative and Eastern Nile Technical Regional Office)<br />Addis Ababa University<br />Future University, Khartoum<br />Ethiopian Mapping Authority, Ethiopian Environmental Authority<br />Ethiopian Meteorology<br />Interested Entities<br />The World Bank<br />USAID<br />U.S. Department of State<br />UNESCO<br />
    5. 5. The Nile Basin<br />3.35 million km2<br />6,650 km long<br />Lower<br />Nile<br />Atbara<br />Bahr<br />el-Ghazal<br />Sudd<br />Blue<br />Nile<br />Sobat<br />White<br />Nile<br />The<br />Lakes<br />
    6. 6. The Nile Basin<br />3.35 million km2<br />6,650 km long<br />Climates range from humid tropical to hyper-arid <br />
    7. 7. The Nile Basin<br />3.35 million km2<br />6,650 km long<br />Climates range from humid tropical to hyper-arid <br />The vast majority or precipitation falls in the Ethiopian and Lake Victoria headwaters regions<br />
    8. 8. The Nile Basin<br />Annual flow at Aswan: 84 BCM<br />86% Ethiopia; 14% Equatorial Lakes<br />Large seasonal variability in the Blue Nile and Atbara<br />Interannual variability can affect both the Blue and the White Nile<br />July 8, 2011<br />Choke Mountain gorge<br />July 10, 2011<br />Bottom of Tissisat falls<br />
    9. 9. The Nile Basin<br />Lower Nile night view from satellite<br />190 million people<br />50% below the poverty line<br />10 nations<br />8 are defined as Least Developed Countries<br />4 are nationally water scarce today<br />6 are predicted to be water scarce by 2025<br />7 have experienced war in the past 20 years<br />At present, there is no water sharing agreement or joint management plan<br />
    10. 10. NILE Basin Countries<br />Ref: UNEP Project GNV011,Jan-Jun 2000, Diana Karyabwite<br />
    11. 11. NASA’s Project Nile<br />Goal:improved hydrometeorological information for research, planning, and water management<br />Evapotraspiration<br />Land Cover Mapping<br />Components: <br />Customized Land Data Assimilation System<br />Land cover mapping and simulation<br />Satellite-derived evapotranspiration<br />Integration to Decision Support<br />LDAS<br />Decision Support System<br />
    12. 12. LDAS Output<br />Land Surface Model<br />A Land Data Assimilation System (LDAS) is a computational system that merges observations with numerical models to produce optimal estimates of land surface states and fluxes.<br />Update Observations<br />Landscape Information<br />Meteorological Data<br />SM ET Runoff<br />
    13. 13. LDAS Early Results - 2001-2009 climatology (Using Noah Land Surface Model)<br />Precipitation input: Rain Fall Estimate at 10 km-3 hourly, WMO Stations<br />Evapotranspiration at 5 km resolution<br />Precipitation – Evapotranspiration = Surface and Subsurface runoff -5 km<br />
    14. 14. LDAS Early ResultsUsing last 30 years (1980-2010) ENSO data<br />El Nino years 4 months precipitation- Jun, Jul, Aug, & Sep<br />La Nina years 4 months precipitation- Jun, Jul, Aug, & Sep<br />Warmer years produce less precipitation over E. Africa<br />Cooler years produce more precipitation over E. Africa<br />C. Alo, JHU<br />
    15. 15. Land Cover Mapping<br />A Nested Approach:<br />Continental scale maps (from MODIS) with general land cover categories (used for deriving the model)<br />Usedfor landscape scale sampling <br />Regional maps (from Landsat - agriculture) with detailed land use categories<br />1:25,000 scale<br />Detailed description of the land cover<br />Local scale mapping (commercial)<br />For detailed analyses and true area estimation<br />M. Ozdogan, Univ. of Wisconsin<br />
    16. 16. MODIS-based regional map(VIS to 2.4 micron – reflected domain)Friedlet.al., 1999 IEEE TGARS<br />Collect one year of 8-day composited MODIS surface reflectance data<br />Identify representative temporal profiles for general land cover classes<br />Apply an automated Decision Tree algorithm (using band comparison) to classify each pixel<br />Use this map as a guide for sampling the landscape for detailed analyses<br />Root<br />Data<br />Internal nodes<br />Decision criteria<br />Final classified label<br />Leaf nodes<br />M. Ozdogan, Univ. of Wisconsin<br />
    17. 17. forest<br />shrubland<br />grassland<br />agriculture<br />barren<br />Yearly product based on MODIS 8-day composite at continental scale - 2005<br />M. Ozdogan, Univ. of Wisconsin<br />
    18. 18. forest<br />shrubland<br />grassland<br />agriculture<br />barren<br />Landsat footprint for regional mapping<br />
    19. 19. Landsat – 30M Scale - 2005<br />Topographic view<br />Winter - December<br />Choke Mountain Caldera<br />Shrubs<br />Agriculture<br />Clouds<br />MODIS<br />Landsat<br />Forest<br />Northern Ethiopia heterogeneous landscape requires high resolution imagery <br />Commercial with 0.5 m resolution<br />Spring, Summer, Fall and Winter averaged<br />
    20. 20. SURFACE TEMPERATURE<br />Tsoil & Tveg<br /> transpiration &<br /> evaporation <br />Tveg<br />TSoil<br />soil evaporation<br />Given known radiative energy inputs, how much water loss is required to keep the soil and vegetation at the observed temperatures?<br />Satellite-derived Evapotranspiration<br />M. Anderson, USDA<br />
    21. 21. ET: The Atmosphere-Land Exchange Inverse (ALEXI) Model<br />(Atmospheric Boundary Layer)<br />Sensible Heat:<br />(from Landsat thermal band 100m)<br />Canopy Heat:<br />Landscape scale<br />TRAD - TM, ASTER, MODIS<br />fc - TM, ASTER, MODIS<br />Regional scale<br />ΔTRAD - Geostationary<br />fc - MODIS (vegetation cover function)<br />Surface temp:<br />Cover fraction:<br />
    22. 22. Early Results: clear-sky ET composites (2008)<br />(~ 6 km resolution)<br />June<br />July<br />Wm-2<br />M. Anderson, USDA<br />
    23. 23. 2009 FEBRUARY<br />Note ET from Sudd and Nile Delta in ALEXI, not captured in LDAS.<br />Average ALEXI ET <br />Average LDAS ET<br />(MJ m-2 d-1)<br />
    24. 24. 2009 JANUARY-DECEMBER<br />Average ALEXI ET (MJ m-2 d-1) <br />Average ALEXI ET/PET<br />
    25. 25. Applications: Decision Support<br />Nile-LDAS<br />Land Cover Maps<br />Management and DSS<br />Satellite ET<br /><ul><li> Drought monitoring
    26. 26. Water resource analysis
    27. 27. Early warning systems
    28. 28. Planning for change</li></ul>Precipitation<br />
    29. 29. Summary<br />Many researchers have studied this region over the last three decades<br />NASA is taking another integrated look at the entire region using satellite observations and multitude of land surface/hydrological models<br />The most significant aspect of this work is to validate using in situ measurements and depends on the regional partners willingness to share in situ data<br />As a starting point, we are working with Ethiopian hydrology and Meteorology offices to get such data for the Blue Nile head waters<br />We also plan to simulate future climate impact on hydrology using IPCC scenarios<br />Our work will be published on a scientific basis <br />Ancient map drawn by Ptolemy<br />